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1 Introduction
The financial system has always been characterised by a high degree of instabil-
ity. Episodes of distress appear systematically and seem to have become more
frequent over the last few years. Famous recent examples are the crises that
hit the US stock market in 1987, the European Monetary System in 1992-1993,
Mexico in December 1994, Asia in 1997, Russia in August 1998 and Argentina
in December 2001.
One of the most important features of recent episodes of financial turmoil

is that they tend to appear in clusters. Economists have paid attention to
this feature only since the Asian crises, when they started adopting the term
contagion: intuitively, the idea of contagion suggests a pathological situation
where the degree of dependence amongst markets increases when a financial
crisis occurs in any of them.
The issue of contagion in financial markets is of particular interest for in-

vestors. From standard portfolio theory we know that the exposition to market
risk can be reduced by diversifying the investment portfolio, for instance by
investing in more than one market. However, if contagion does occur in periods
of financial turmoil then portfolio diversification may not be as effective as it
would be in the absence of contagion.
There now exists a large body of empirical literature trying to assess the

presence of contagion in financial markets, as surveyed by Dungey et al. (2005).
However, many of these studies make use of unsuitable econometric models, and
the results they obtain are likely to be misleading. An exception is the work
by Pesaran and Pick (2006), where a canonical model of contagion is proposed;
however, the issue of estimation and inference is left incomplete. The aim of this
paper is therefore to fill this gap, so to provide a complete theoretical framework
for the analysis of contagion.
The paper is organised as follows. Section 2 provides a review of the relevant

literature. Section 3 describes the canonical model of contagion proposed in
Pesaran and Pick (2006), while the solution is provided in Section 4. Section 5
discusses estimation of the model, obtained by GIVE and Maximum Likelihood
estimation, while Monte Carlo evidence is presented in Section 6. Section 7 deals
with the issue of testing for contagion. An empirical application to stock market
returns is provided in Section 8. Finally Section 9 presents the conclusions. Add
directions for future work

2 Review of the literature

2.1 Theoretical models of financial crises

The theoretical literature on financial crises starts with the first generation
models of currency crises1 . In this stream of literature, a speculative attack
to a country’s currency occurs because the government is no longer able to

1The seminal paper of first generation models is Krugman (1979).

2



defend a fixed exchange rate due to an inconsistent economic policy: therefore,
in this case a currency crisis is seen as unavoidable. First generation models
therefore provide a plausible explanation for the failure of stabilization policies
in Latin America during the 1970s and 1980s; however, they are not able to
fully explain the collapse of the European Monetary System in 1992-93: indeed,
while countries like Italy and Spain were running inconsistent monetary and
fiscal policies, this was not the case of France and Britain.
While in first generation models a currency crisis is unavoidable, in second

generation models speculative attacks are self-fulfilling and a crisis results from
the influence of expectations upon macroeconomic policy decisions2. In other
words, a speculative attack occurs because economic agents expect them to arise,
even if the maintenance of the peg would be consistent with the state of economic
fundamentals. A key feature of second generation models is that they exhibit
multiple equilibria: for a given state of economic fundamentals, a speculative
attack may or may not occur depending on agents’ expectations. Further, a shift
in expectations may move the system from a tranquil state to a crisis scenario.
Second generation models therefore offer a plausible explanation of why France
and Britain had to leave the European Monetary System. However, they focus
on a single economy, so they are unable to explain why financial crises tend to
cluster together.
According to Masson (1998) the simultaneous occurrence of financial crises

can be caused by monsoonal effects, spillovers and pure contagion. Monsoonal
effects are determined by the dependence of macroeconomic fundamentals upon
a common source; for example, developing countries strongly depend on indus-
trial countries, and a negative economic shock in the latter is likely to affect
the former and determine a cluster of crises. Spillovers are driven by the cor-
relation between external economic linkages; for example, if two countries have
trade linkages and one of them is hit by a crisis and has to devalue, then the
other one will be forced to devalue in order to keep its level of competitiveness.
Finally, pure contagion occurs when a crisis spreads from one country to another
without any change in macroeconomic fundamentals; it can therefore be mod-
elled as a situation characterised by the presence of multiple equilibria, where
the economic system shifts from one equilibrium to another one. Following Pe-
saran and Pick (2006), we will simply refer to pure contagion as contagion, while
monsoonal effects and spillovers will be jointly referred to as inter-dependence
effects. In this set up contagion can be associated to a system affected by fi-
nancial fragility, where the banking system faces the possibility of a short term
liquidity shortage, which may lead investors to generate bank runs3.

2.2 Empirical models of financial contagion

In the empirical literature two approaches have become particularly popular in
assessing the presence of contagion: the first one is based upon measuring the

2The seminal paper of second generation models is Obstfeld (1986).
3The seminal paper of models of financial fragility is Diamond and Dybvig (1983).
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probability of crisis in one market, conditional upon a crisis in another market;
the second one is based upon the estimation of first and/or second moments.
According to the probability approach, contagion occurs if a crisis in one

market increases the likelihood of a crisis in another market above the level
that would be implied by the interdependence between the two markets. This
approach has been mainly used in the context of currency crises, and has become
popular after the work by Eichengreen et al. (1996). The empirical studies make
use of a pooled probit model, where each equation corresponds to a market at
a given time period, and a unit value of the dependent variable corresponds to
a situation of crisis. In order to capture possible contagion effects, a dummy
variable is included as a covariate, which takes value equal to unity if any other
market in the sample is in crisis. By treating the contagion dummy as exogenous,
standard Maximum Likelihood estimation is applied. However, the contagion
dummy is actually endogenous; the resulting the Maximum Likelihood estimator
is then inconsistent and statistical inference based upon it provides misleading
results.
The moments-based approach has been mainly used in the context of stock

markets crises, and defines contagion as an increase in the correlation between
markets during crisis periods compared to tranquil periods. It has become pop-
ular after the work by Forbes and Rigobon (2002). The empirical studies are
generally based upon a bivariate VAR model with no equation specific explana-
tory variables, so that estimation of the structural parameters and identification
of contagion effects from interdependence is not possible. The identification is-
sue is then circumvented by a priori identifying the market where the crisis
starts; the correlation coefficients of the VAR residuals for the whole sample
and the crisis periods are then compared. Although the endogeneity issue is
circumvented, this methodology suffers from endogeneity bias, since it requires
a priori identification of the crisis periods.

3 Model
Consider the following model introduced in Pesaran and Pick (2006) for a two-
market set up

y1t = δ01zt +α01x1t + β1I (y2t − c2) + u1t, (1)

y2t = δ02zt +α02x2t + β2I (y1t − c1) + u2t, (2)

where the dependent variable yit is a performance indicator for market i = 1, 2,
t = 1, . . . T . The regressors xit are ki × 1 vectors of market specific regressors
(which may include lagged values of yit) such that x1t ∩ x2t = ∅, while zt is an
s×1 vector of common explanatory variables; both the xit and zt are assumed to
be predetermined and independent upon the shocks u1t and u2t. The indicator
function I (A) takes value equal to unity if A > 0 and zero otherwise; c1 and
c2 are non-negative thresholds. The error terms u1t and u2t are assumed to be
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serially uncorrelated and such thatµ
u1t
u2t

¶
|zt,x1t,x2t ∼ IID [0,Σu] ,

where the symmetric and positive definite covariance matrix Σu is defined as

Σu ≡
∙

σ2u1 σu1u2
σu1u2 σ2u2

¸
so that the constant correlation coefficient between u1t and u2t is defined as
ρu1u2 = (σu1u2 /σu1σu2 ). Finally, the slope coefficients β1 and β2 are assumed
to be non-negative4.
In the set up given by (1) and (2) a crisis in market i occurs whenever the

dependent variable yit is strictly greater than the corresponding threshold ci:
in other words, a crisis is associated to an extreme positive value of yit. The
contagion literature provides several examples for the performance indicator yit.
In analysing currency crises, Eichengreen et al. (1996) use the index of exchange
market pressure first introduced by Girton and Roper (1977): this is obtained as
a weighted average of exchange rate devaluation, increase in short term interest
rate and decrease in international reserves, where the weights are chosen so
to equalise the volatility of the three components5. Favero and Giavazzi (2002)
deploy the spreads between 3-months German rate and 3-months interest rate in
other Exchange Rate Mechanism countries. Finally, in analysing stock market
crises, King and Wadhwani (1990), Boyer et al. (1999), Loretan and English
(2000), Forbes and Rigobon (2002) and Corsetti et al. (2005) make use of stock
market returns.
In the model given by (1) and (2), interdependence between markets 1 and 2

is captured by the non-zero value of the correlation coefficient ρu1u2 ; conversely,
contagion from market j to market i is said to occur if

Pr [yit > ci |yjt > cj ; zt,xit ] > Pr [yit > ci |yjt ≤ cj ; zt,xit ] , i, j = 1, 2, i 6= j,

meaning that contagion is reflected in a positive value of βi: therefore, in this
paper a probability-based definition of crisis is adopted. It is important to
note that interdependence is the result of normal market interaction, whereas
contagion only takes place in time of crisis. Formally, testing for contagion from
market j to market i results in testing the null hypothesis βi = 0 against the
one-sided alternative βi > 0.
The model in (1) and (2) represents a two-equation nonlinear simultaneous

equations model, which has been extensively studied in the econometric litera-
ture, as summarised in Amemiya (1985). More precisely, it is an example of a

4From a theoretical point of view, β1 and β2 can take any real value. However, given the
economic application of the model, they are assumed to be non-negative. An analysis of the
model for cases where β1 and/or β2 can be negative is provided in Appendix A.

5Esquivel and Larrain (1998) define the market pressure index in the same way as Eichen-
green et al. (1996). Coversely, Kruger et al. (1998) and Stone ane Weeks (2002) exclude
interest rates since they are not market-determined in developing countries.
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simultaneous equations model with endogenous switching regimes: the model is
piecewise linear, where the shifts in the intercepts are driven by an endogenous
dummy variable equal to unity whenever the associated endogenous continuous
variable crosses the threshold. In this sense the model relates to the work by
Heckman (1978), Maddala (1983) and more recently Tamer (2003), which all
study the issue of endogenous switching in the context of simultaneous equa-
tions models6 . Those models however differ from that in (1) and (2) in taking
the threshold parameters as known (and generally equal to zero). The issue
of estimation of threshold parameters is discussed in the time series literature
following the work by Tong (1990), which introduces the threshold principle to
nonlinear time series models: however, in this context the shift in the regime is
determined by exogenous variables; for a survey about inference in TAR models
see also Hansen (1997).

4 Solving the model
Define

wit = δ0izt +α0ixit + uit, (3)

so that (1) and (2) become

y1t = w1t + β1I (y2t − c2) ,

y2t = w2t + β2I (y1t − c1) .

Two possible cases then arise. If β1 or β2 (or both) is equal to zero the
system has a unique solution. For example, if β1 = 0 the system becomes
triangular and the solution is simply given by

y1t = w1t + β1I (y2t − c2) ,

y2t = w2t.

If β1 and β2 are both strictly positive, the system can be more easily solved
by defining the following normalised variables

Yit =
yit − ci
βi

, Wit =
wit − ci

βi
, i = 1, 2; (4)

in this way the system can be equivalently written as

Y1t = W1t + I (Y2t) , (5)

Y2t = W2t + I (Y1t) . (6)

From (5) and (6), depending on the sign of the dependent variables Y1t and
Y2t four possible cases arise, each of them corresponding to a region in the

6These models also assume that at least one continuous endogenous variable is latent, while
in the model in (1) and (2) both endogenous variables are observable.
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(W1t,W2t) plane:

Case 1: Y1t ≤ 0, Y2t ≤ 0, Case 2: Y1t ≤ 0, Y2t > 0,

Case 3: Y1t > 0, Y2t ≤ 0, Case 4: Y1t > 0, Y2t > 0,
(7)

where Yit > 0 corresponds to a crisis in market i at time t, whereas Yit ≤ 0
denotes a tranquil period. The cases described in (7) correspond to the following
values for W1t and W2t

Case 1: W1t ≤ 0,W2t ≤ 0, Case 2: W1t ≤ −1,W2t > 0,

Case 3: W1t > 0,W2t ≤ −1, Case 4: W1t > −1,W2t > −1.
(8)

The four combinations of values for W1t and W2t described in (8) give rise to
the following mutually exclusive solution regions in the (W1t,W2t) space:

Region A:
½

W1t > −1
W2t > 0

∪
½

W1t > 0
−1 < W2t ≤ 0

Region B:
½

W1t > 0
W2t ≤ −1

Region C:
½

W1t ≤ −1
−1 < W2t ≤ 0

∪
½

W1t ≤ 0
W2t ≤ −1

Region D:
½

W1t ≤ −1
W2t > 0

Region E:
½
−1 < W1t ≤ 0
−1 < W2t ≤ 0

(9)
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The solution regions A to E in (9) are summarised in the following figure:

A

-1

-1-1

BC

D

E
W1t

W2t

In terms of the normalised variables Yit and Wit defined in (4) the complete
solution to the model can be written as:½

Y1t =W1t + 1 > 0
Y2t =W2t + 1 > 0

(Region A)

½
Y1t =W1t > 0
Y2t =W2t + 1 ≤ 0

(Region B)

½
Y1t =W1t ≤ 0
Y2t =W2t ≤ 0

(Region C)

½
Y1t =W1t + 1 ≤ 0
Y2t =W2t > 0

(Region D)

½
Y1t =W1t ≤ 0
Y2t =W2t ≤ 0

∪
½

Y1t =W1t + 1 > 0
Y2t =W2t + 1 > 0

(Region E)

(10)

From (10), the model has a unique solution in regions A, B, C, and D,
whereas multiple solutions arise in region E: this is because region E is generated
by the intersection between the region where Y1t and Y2t are both less than or
equal to zero and the region where Y1t and Y2t are both positive (Case 1 and
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4 respectively in (7) and (8)). Pesaran and Pick (2006) model the solutions in
region E as the outcome of a randomisation process dt defined as

dt ∼ Bernoulli (πd) , (11)

where πd is the unknown probability of observing dt = 1: therefore, assuming
that πd represents the probability of observing the favourable non-crisis equi-
librium Yit =Wit, from (10) the solution in region E can be written as

Yit = dtWit + (1− dt) (1 +Wit) = 1 +Wit − dt. (12)

Taking into account (3), (4), (10) and (12), the reduced form for the original
model in (1) and (2) is given by½

y1t = w1t + β1 > c1
y2t = w2t + β2 > c2

(Region A)

½
y1t = w1t > c1
y2t = w2t + β2 ≤ c2

(Region B)

½
y1t = w1t ≤ c1
y2t = w2t ≤ c2

(Region C)

½
y1t = w1t + β1 ≤ c1
y2t = w2t > c2

(Region D)

½
y1t = w1t + (1− dt)β1
y2t = w2t + (1− dt)β2

(Region E)

(13)

Defining the information set zt as

zt =
³
z
0

t,x
0

1t,x
0

2t

´0
,

the probabilities of each of the four events in (7) are given by

Pr [y1t ≤ c1, y2t ≤ c2 |zt ] = Pr [C |zt ] + Pr [E |zt ] ,

Pr [y1t ≤ c1, y2t > c2 |zt ] = Pr [D |zt ] ,

Pr [y1t > c1, y2t ≤ c2 |zt ] = Pr [B |zt ] ,

Pr [y1t > c1, y2t > c2 |zt ] = Pr [A |zt ] + Pr [E |zt ] .

(14)

As a consequence, from (14) the probability qt of any of the events in (7) is

qt = Pr [y1t ≤ c1, y2t ≤ c2 |zt ] + Pr [y1t ≤ c1, y2t > c2 |zt ]
+Pr [y1t > c1, y2t ≤ c2 |zt ] + Pr [y1t > c1, y2t > c2 |zt ]

= 1 + Pr [E |zt ]
> 1,

(15)
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meaning that the sum of the probabilities of the four events is greater than
unity. The conditional probability of being in region E is

Pr [E |zt ] = F12

µ
c1 − δ01zt −α01x1t

σ1
,
c2 − δ02zt −α02x2t

σ2

¶
−F12

µ
c1 − δ01zt −α01x1t

σ1
,
c2 − δ02zt −α02x2t − β2

σ2

¶
−F12

µ
c1 − δ01zt −α01x1t − β1

σ1
,
c2 − δ02zt −α02x2t

σ2

¶
+F12

µ
c1 − δ01zt −α01x1t − β1

σ1
,
c2 − δ02zt −α02x2t − β2

σ2

¶
,

(16)
F12 being the conditional joint probability distribution function of the error
terms u1t and u2t.
The model in (1) and (2) is an example of an incoherent econometric model.

Gourieroux et al. (1980) define a coherent model as one with a "well defined
reduced form". This is equivalent to saying there exists a one-to-one correspon-
dence between the shock uit and the related dependent variable yit for given
values of the exogenous variables zt and xit. This is clearly not the case for the
model in (1) and (2), due to the randomisation process dt arising in region E,
which leads to the existence of multiple equilibria7.
Incoherent models have been widely studied in the econometric literature,

as summarised in Chapter 5 of Maddala (1983). However, for identification and
estimation purposes, most of the literature has been concerned with imposing
the well-known "coherency" conditions; see for example Heckman (1978) and
Gourieroux et al. (1980). In the context of the model in (1) and (2) this means
imposing the condition β1β2 = 0.
Some attempts have been made to avoid imposing the coherency condition.

For example, Kooreman (1994) considers the model in (1) and (2) where the
dependent variables yit are latent rather than observable, and the model itself
becomes a multivariate probit. The model is then estimated by Maximum Like-
lihood under the assumption of the probability πd in the randomisation process
(11) being known: however, this restrictive assumption may lead to an incon-
sistent estimator. A further improvement is presented in Tamer (2003), which
treats the multiple equilibria outcomes as two separate events: this is achieved
by estimating the model by semiparametric Maximum Likelihood, where the
probability of one of the incoherent outcomes is replaced by the sample coun-
terpart. The resulting estimator is shown to be consistent and

√
n normal, and

more efficient than the Maximum Likelihood estimator obtained from consider-
ing the multiple equilibria outcomes as a single event.
This paper also contributes to the literature of incoherent models by devel-

oping a fully parametric Maximum Likelihood estimator for the model in (1)
and (2) for the case where both the dependent variables yit are observable and
without imposition any restriction upon the randomisation process (11): as it

7Note that the coherency issue of the model is still present even if β1 and/or β2 are
negative, as it arises from the analysis in Appendix A
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will be shown in Section 5.3, the likelihood function does not depend upon the
randomisation process dt.

5 Estimation

5.1 Identification

The model in (1) and (2) is a simultaneous equations system, so that it is crucial
to determine under what conditions contagion effects can be identified from
interdependence: therefore, the issue of identification needs to be addressed first.
Because of the non-linearity induced by the endogenous indicator functions,
the reduced form in (13) cannot be obtained from (1) and (2) by a simple
non-singular linear transformation: therefore, the exclusion restrictions cannot
be derived as in the case of linear models8. However, notice that for each
combination of the threshold parameters c1 and c2, the model is linear in the
remaining set of parameters: the identification problem can then be solved by
employing elementary linear algebra.

Theorem 1 Consider the model in (1) and (2) where x1t ∩ x2t = ∅; then the
model is identified if α1,α2 6= 0.

Proof. Consider (1) and (2) and, without loss of generality, assume that δ1 =
δ2 = 0. Define

A =

∙
α01 0
0 α02

¸
B =

∙
0 β1
β2 0

¸
so that (1) and (2) can be written in matrix form as∙

y1t
y2t

¸
= A

∙
x1t
x2t

¸
+B

∙
I (y1t − c1)
I (y2t − c2)

¸
+

∙
u1t
u2t

¸
. (17)

Pre-multiply (17) by the a 2× 2 non-singular matrix F, so to obtain

F

∙
y1t
y2t

¸
= FA

∙
x1t
x2t

¸
+FB

∙
I (y1t − c1)
I (y2t − c2)

¸
+F

∙
u1t
u2t

¸
. (18)

Therefore, in order for (17) to be identified, (17) itself and (18) must lead to
different reduced forms. Alternatively, if (17) is identified the only admissi-
ble matrix F is F = I2, meaning that F = I2 is the only matrix satisfying the
restrictions imposed upon the matrices of parameters A and B. Therefore,
identification of (17) requires F to be unique and equal to I2. In order for F to
be unique, from (17) and (18) the system

[F⊗ I3 − I6]

⎡⎣ I2 0 0
0 A 0
0 0 B

⎤⎦ = 0 (19)

8See Hausman (1983) for a discussion of identification issues in linear simultaneous equation
models.
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has to have a unique solution with respect to the elements of F. However, (19)
is a system with 4 unknowns (the elements of F) and (k1 + k2 + 4) equations.
Therefore, solving (19) is equivalent to solving

[F⊗ I2 − I4]
∙
A 0
0 B

¸
= 0

with respect to F. In order for F to be unique, the condition

rank

µ∙
A 0
0 B

¸¶
= 4 (20)

must hold, which can be interpreted as the sufficient rank condition for identi-
fication of (17). In order for (20) to hold the condition k1 + k2 ≥ 2 needs to be
fulfilled. However, if α1 = 0 or α2 = 0 then (20) does not hold, implying that
(17) is not identified.
From Theorem 1, the presence of equation specific explanatory variables

is sufficient to identify the model in (1) and (2). This is in contrast to the
standard linear case, where equation specific explanatory variables are necessary
to guarantee identification of the model, but where a further sufficient rank
condition is required. In addition, whereas in the linear case the exogenous
variables represent the optimal set of instruments, this is no longer the case in
the model in (1) and (2) and more generally in nonlinear simultaneous equation
models; this point is further discussed in Section 5.2.
Having obtained the condition for identification in Theorem 1 we can now

turn our attention to the issue of estimation. Single equation OLS estimation
would deliver inconsistent estimates due to the endogeneity of the contagion
dummies. Therefore, in Section 5.2 the GIVE estimator of the model proposed
in Pesaran and Pick (2006) is discussed, while the Conditional Full Information
Maximum Likelihood (CFIML) estimator is derived in Section 5.3.

5.2 Single equation GIVE estimation

Under the simplifying assumption of the threshold parameters c1 and c2 being
known and equal to c01 and c02 respectively, Pesaran and Pick (2006) propose to
estimate the model in (1) and (2) by single equation GIVE estimation.
Define the vectors

φi =
¡
δ0i,α

0
i, βi

¢0
, yi = (yi1, . . . , yiT )

0
, hit =

¡
z0t,x

0
it, I

¡
yjt − c0j

¢¢0
and the matrices

Hi =

⎡⎢⎣ h0i1
...
h0iT

⎤⎥⎦ , Wi =

⎡⎢⎣ w0i1
...
w0iT

⎤⎥⎦ , PWi
=Wi (W

0
iWi)

−1W0
i

for i, j = 1, 2, i 6= j and t = 1, . . . , T , wit being the vector of instruments. The
GIVE estimator is then given by

φ̂i = (H
0
iPWiHi)

−1 (H0
iPWiyi) , i = 1, 2. (21)
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Given the nonlinear nature of the model, an important issue is the choice
of the optimal vector of instruments w∗it. For given values of c1 and c2, the
structural equations of the model in (1) and (2) are linear in the parameters,
but contain regressors that are nonlinear functions of the endogenous variables;
following Kelejian (1971) and Bowden and Turkington (1981), in this framework
the optimal instrument for the endogenous contagion dummy I

¡
yit − c0i

¢
would

be9

w∗it = E
£
I
¡
yit − c0i

¢
|zt

¤
= Pr

£
yit − c0i > 0 |zt

¤
, (22)

expression (22) being the conditional probability of crisis in market i.10

The optimal instrument in (22) is not feasible: although the analytical ex-
pression is available in closed form once the joint density of the shocks u1t and
u2t in (1) and (2) is known, it also depends upon the unknown values of the pa-
rameters 11. However, following the parametric approach proposed in Kelejian
(1971), the endogenous regressor I

¡
yit − c0i

¢
can be approximated by means of

a polynomial of order m in the corresponding equation specific predetermined
variables xit.12 The vector of instruments for the model in (1) and (2) is then
given by

wit =
h
z0t,x

0
it,x

0
jt,
¡
x2jt
¢0
, . . . ,

¡
xmjt
¢0i0

, i, j = 1, 2, i 6= j, t = 1, . . . , T,

where xnjt denotes the column vector made of the n− th powers of each of the
elements of the vector xjt. Pesaran and Pick (2006) approximate the endogenous
crisis indicators by a polynomial in the predetermined variables of order up to
m = 6.
The instrumental variables approach to estimation of the model in (1) and

(2) however faces several problems. First, (21) is a single equation estimator,
so that efficiency issues arise. Second, it is likely to suffer from a weak instru-
ments problem, meaning that the instruments are only weakly correlated with
the endogenous explanatory variables; if this is the case, the resulting GIVE
estimators do not have asymptotically normal distribution and standard statis-
tical inference provides misleading results13. Both the efficiency issues and the
weak instruments problem are investigated in Monte Carlo experiment carried
out in Section 6.
The GIVE estimator in (21) takes the threshold parameters as known; due

to the discontinuity induced by the contagion dummies, the threshold parame-
ters can be estimated by grid search, and the remaining set of parameters by

9Notice that the optimal vector of instruments obtained in Kelejian (1971) and Bowden
and Turkington (1981) is more generally valid for a system where the structural equations
are linear in the parameters and contain regressors which are nonlinear functions of both the
endogenous and the predetermined variables.
10As shown in Amemiya (1977), in a general framework the optimal vector of instruments

w∗it is given by the conditional expectation of the gradient calculated with respect to the
vector of parameters and evaluated at the true parameters values.

11The analytical expression of Pr yit − c0i > 0 |zt is obtained in Appendix B.
12For nonparametric estimates of optimal instruments see Newey (1990).
13For a survey of the weak instruments problem see Stock et al. (2002).
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instrumental variables. Define

hit (cj) = (z
0
t,x

0
it, I (yjt − cj))

0 , Hi (cj) =

⎡⎢⎣ h0i1 (cj)
...

h0iT (cj)

⎤⎥⎦ , i, j = 1, 2, i 6= j,

where the notation is chosen so to stress that the elements of hit (cj) andHi (cj)
depend upon the unknown threshold cj . For the i− th equation the parameter
cj can then be estimated by grid search, the estimator of cj being

ĉj = argmin
cj

h
W0

i

³
yi −Hi (cj) φ̂i (cj)

´i0
(W0

iWi)
−1
h
W0

i

³
yi −Hi (cj) φ̂i (cj)

´i
,

for i, j = 1, 2, i 6= j, where φ̂i (cj) is defined as in (21) for each value of cj in
the grid; the resulting estimator for φi will be given by φ̂i (ĉj).

5.3 Maximum Likelihood Estimation

In Section 5.2 it was pointed out that the limited information GIVE estimator
proposed in Pesaran and Pick (2006) may raise efficiency issues as well as suffer
from weak instruments problems. Under the additional assumption of the joint
distribution of the shocks being known, the threshold parameters c1 and c2 in
the model in (1) and (2) can be estimated by grid search, while the remaining
set of parameters can be estimated by Conditional Full Information Maximum
Likelihood (CFIML).
As discussed in Amemiya (1985), in the presence of a one-to-one correspon-

dence between the dependent variables and the shocks the likelihood function
for a nonlinear simultaneous equations model can be written as the product be-
tween the joint density of the shocks and the Jacobian. However, as the model
in (1) and (2) is incoherent, this one-to-one correspondence is no longer present.
Therefore, the construction of the likelihood function has to take into account
the coherency issue of the model. Intuitively this can be done by considering the
following two aspects. First, recall from (15) that the sum of the probabilities
of the four possible regimes differs from unity: therefore the joint density of y1t
and y2t has to include a normalisation term qt that ensures the density itself
integrates to unity. Second, the joint density of y1t and y2t can be obtained
from that of u1t and u2t once the appropriate regime is selected: this means the
resulting joint density function will be piecewise.
Formally, define the following four vectors of parameters

θ1 =
¡
δ01,α

0
1, δ

0
2,α

0
2

¢0
, θ2 =

¡
δ01,α

0
1, β1, δ

0
2,α

0
2

¢0
,

θ3 =
¡
δ01,α

0
1, δ

0
2,α

0
2, β2

¢0
, θ4 =

¡
δ01,α

0
1, β1, δ

0
2,α

0
2, β2

¢0
,

where θi describes the joint density function in regime i, for i = 1, . . . , 4. Given
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the model in (1) and (2), the joint pdf is then given by

f (y1t, y2t |zt ) =
1

qt
f (y1t, y2t;θ1 |y1t ≤ c1, y2t ≤ c2;zt ) Pr [y1t ≤ c1, y2t ≤ c2 |zt ]

+
1

qt
f (y1t, y2t;θ2 |y1t ≤ c1, y2t > c2;zt ) Pr [y1t ≤ c1, y2t > c2 |zt ]

+
1

qt
f (y1t, y2t;θ3 |y1t > c1, y2t ≤ c2;zt ) Pr [y1t > c1, y2t ≤ c2 |zt ]

+
1

qt
f (y1t, y2t;θ4 |y1t > c1, y2t > c2;zt ) Pr [y1t > c1, y2t > c2 |zt ] ,

which simplifies to

f (y1t, y2t |zt ) =
[1− I (y1t − c1)] [1− I (y2t − c2)]

qt
f (y1t, y2t;θ1 |zt )

+
[1− I (y1t − c1)] I (y2t − c2)

qt
f (y1t, y2t;θ2 |zt )

+
I (y1t − c1) [1− I (y2t − c2)]

qt
f (y1t, y2t;θ3 |zt )

+
I (y1t − c1) I (y2t − c2)

qt
f (y1t, y2t;θ4 |zt )

(23)
once the properties of the truncated distributions are taken into account14. The
normalising variable qt, which ensures that the conditionR∞

−∞
R∞
−∞f (y1t, y2t |zt ) dy1tdy2t = 1

is fulfilled, is given by

qt =
R c1
−∞
R c2
−∞f (y1t, y2t;θ1 |zt ) dy2tdy1t +

R c1
−∞
R∞
c2
f (y1t, y2t;θ2 |zt ) dy2tdy1t

+
R∞
c1

R c2
−∞f (y1t, y2t;θ3 |zt ) dy2tdy1t +

R∞
c1

R∞
c2
f (y1t, y2t;θ4 |zt ) dy2tdy1t

= Pr [y1t ≤ c1, y2t ≤ c2 |zt ] + Pr [y1t ≤ c1, y2t > c2 |zt ]
+Pr [y1t > c1, y2t ≤ c2 |zt ] + Pr [y1t > c1, y2t > c2 |zt ]

= 1 + Pr [E |zt ] ,
(24)

expression (24) being the same as (15). The log-likelihood function is then given
by

Ln =
TX
i=1

log f (y1t, y2t |zt ) .

Note that the CFIML estimator cannot be replaced by a SURE-type estima-
tor: this is because the density selected by the indicator functions I (y1t − c1)
and I (y2t − c2) has to be weighted by the normalising term qt, which depends
upon the whole set of parameters of the model, and not just on that character-
ising the selected regime.
14From the poperties of the truncated distributions we have

f (y1t, y2t;θ1 |y1t ≤ c1, y2t ≤ c2;zt ) =
[1− I (y1t − c1)] [1− I (y2t − c2)] f (y1t, y2t;θ1 |zt )

Pr [y1t ≤ c1, y2t ≤ c2 |zt ]
.

The other three components of the density function are obtained in a similar way.
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6 Monte Carlo Analysis

6.1 Experimental design

The Data Generating Processes (DGPs) for the Monte Carlo experiments are
based on the following model

yrit = δi + αix
r
it + βiI

¡
yrjt − cj

¢
+ urit i, j = 1, 2 i 6= j (25)

where t = 1, 2, . . . T , r = 1, 2, . . . R, r refers to the replication and R is the total
number of replications; xrit is a simulated scalar explanatory variable; δi, αi, βi
and ci are scalar parameters, which are kept fixed through the replications. The
estimated model is also given by (25). Without loss of generality, we assume that
the threshold parameters ci are known and equal to c0i . In the case of the CFIML
estimator, the resulting (normalised) log-likelihood function consistent with (25)
is maximised by using the BFGS algorithm, with starting values obtained from
single equation OLS estimation. The whole experiment is run in Ox 3.30.
We focus on the parameter β1. The performance of the estimators we con-

sider in Section 5 is assessed by computing the bias and RMSE, respectively
defined as

bias =
1

R

XR

r=1

³
β̂
r

1 − β1

´
, RMSE =

r
1

R

XR

r=1

³
β̂
r

1 − β1

´2
.

We also compute the two sided rejection frequency, defined as the ratio between
the number of times the computed test statistic lies outside the 95% confidence
interval and the total number of replications R: if the test statistic is computed
under the null the rejection frequency is the size of the test; conversely, if the test
statistic is computed under the alternative the rejection frequency is the power.
In computing the test statistic for the CFIML estimator, the Wald principle is
employed, where the estimated covariance matrix is obtained as the inverse of
the empirical Hessian.
In assessing the size performance of the tests, each replication can be seen

as a Bernoulli trial; therefore, for a high value of R the normal approximation
can be employed. As a consequence, we will not reject the null hypothesis of
the actual size being equal to the nominal size of 5% if the former lies within
the interval "

0.05± 1.96
r
0.05 · 0.95

R

#
.

The value R = 2000 is chosen so that the 95% confidence interval is approxi-
mately equal to [0.04, 0.06].
In generating the data, the sample size was set equal to T = 50, 100, 200, 500, 1000,

the values c01 = c02 = 1.64 were arbitrarily chosen and the seed was set equal to
−1. Finally, we set β2 = 0.2 and we considered two different classes of exper-
iments, namely β1 = 0 (so that no multiple equilibria arise) and β1 = 0.5 (so
that multiple equilibria do arise)15.
15An experiment with β2 = 0.2 was also attempted; the results are very similar to those

obtained in the case β2 = 0.5 and therefore not shown.
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Results of the Monte Carlo experiments for the CFIML estimator and the
GIVE estimator with m = 1 and m = 6 are reported in Table 1 (for the case
β1 = 0) and in Table 2 (for the case β1 = 0.5)

16.

Experiment 1: β1 = 0. In this case the DGP in (25) simplifies to

yr1t = δ1 + α1x
r
1t + ur1t,

yr2t = δ2 + α2x
r
2t + β2I

¡
yr1t − c01

¢
+ ur2t.

The error terms are generated by adopting the following common factor
structure

urit =
γif

r
t + εritp
γ2i + 1

,

where εrit ∼ NID (0, 1), frt ∼ NID (0, 1), while the coefficient γi is fixed in
repeated samples and γi ∼ U (0.8, 1). In this way

Σu =

∙
1 ρu1u2

ρu1u2 1

¸
where

ρu1u2 = Cov [u
r
1tu

r
2t] =

γ1γ2p
γ21 + 1

p
γ22 + 1

,

the average value of the correlation coefficient ρu1u2 being equal to

qu1u2 = E
£
ρu1u2

¤
=

Ã
E

"
γip
γ2i + 1

#!2
= 0.1616

The equation specific explanatory variable xrit is generated asµ
xr1t
xr2t

¶
∼ N [0;Σx] .

The covariance matrix Σx is implicitly defined by generating xrit by means of
the following one-factor model

xrit =
φih

r
t + qritq
φ2i + 1

where qrit ∼ NID (0, 1), hrt ∼ NID (0, 1) while the coefficient φi is fixed in
repeated samples and φi ∼ U (0.8, 1). In this way we have

Σx =

∙
1 ρx1x2

ρx1x2 1

¸
,

16The OLS estimator (which delivers inconsistent estimates of the contagion coefficient β1)
and the GIVE estimator for m = 2, 3, 4, 5 were also analysed.
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where

ρx1x2 =
φ1φ2q

φ21 + 1
q
φ22 + 1

.

In order to ensure that the regressors are independent of the errors, hrt and frt
are drawn independently of each other.
The role of the slope coefficients α1 and α2 is to control for the goodness

of fit of the model. In the case of the equation for yr1t, since no regressor is
endogenous, the coefficient of determination can be easily obtained as

R21 = 1−
Var [ur1t]

Var [yr1t]

where
Var [yr1t] = α21Var [x

r
1t] + Var [u

r
1t] = α21 + 1

so that

R21 = 1−
1

α21 + 1
=

α21
α21 + 1

.

In the case of the equation for yr2t, because the term I
¡
yr1t − c01

¢
is endogenous

the coefficient of determination cannot be computed from the residuals ur2t.
Following the approach introduced in Pesaran and Smith (1994), the prediction
errors are deployed; they are defined as

vr2t = yr2t − E [yr2t |zr
t ] = yr2t − δ2 − α2x

r
2t − E [I (yr1t − c1) |zr

t ]

where zr
t = (x

r
1t, x

r
2t)

0 and

E
£
I
¡
yr1t − c01

¢
|zr

t

¤
= Pr

£
yr1t − c01 > 0 |zr

t

¤
= 1−Φ

¡
c01 − δ1 −α1xr1t

¢
.

Therefore, the coefficient of determination can be computed by simulation as

R22 =

PR
r=1

R

"
1−

PT
t=1 (v

r
2t)

2PT
t=1 (y

r
2t − ȳr2)

2

#

where ȳr2 =
³PT

t=1 y
r
2t

´.
T . We set α1 = α2 = α and we consider two cases,

α = 0.5 and α = 1: in the former R21 = 0.2 and R
2
2 ' 0.2; in the latter R21 = 0.5

and R22 ' 0.5.17
Finally, the role of the parameters δ1 and δ2 is to control for the uncondi-

tional probability of crisis, so to assess the performance of the estimators when
very few observations for the crisis regime are available. This is an important
issue in multiple regimes models. For example, in the context of univariate
TAR models, Hansen (1997) suggests to select the grid range for the threshold

17The coefficients of determination R21 and R
2
2 have very similar results because the endoge-

nous dummy I yr1t − c01 determines a shift in the intercept in the equation for yr2t. Therefore,
the effect upon the explanatory power of the model is negligible, unless β2 assumes very high
values.
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parameter so to trim the top and bottom 15% quantiles of the distribution of
the dependent variable: in this way each regime has enough observations to es-
timate the relevant parameter. In the case of yr1t the unconditional probability
of crisis π1 is obtained in closed form as

Pr
£
y1t − c01 > 0

¤
= Pr

£
δ1 + α1x

r
1t + ur1t − c01 > 0

¤
= Pr

"
α1x

r
1t + ur1tp
α21 + 1

>
c01 − δ1p
α21 + 1

#

= 1−Φ
Ã

c01 − δ1p
α21 + 1

!
= π1

so that δ1 is given by

δ1 = c01 −
q
α21 + 1

£
Φ−1 (1− π1)

¤
.

In the case of yr2t the probability of crisis is computed by simulation as

π2 = Pr
£
yr2t − c02 > 0

¤
=

PR
r=1

R

ÃPT
t=1 I

¡
yr2t − c02

¢
T

!
.

We then choose δ2 so to control for π2. We set π1 = π = 0.005, 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50 '
π2. This is an important part in the experimental design, since if I

¡
yr2t − c02

¢
=

0, ∀t then no observations are available to estimate β1; conversely, if I
¡
yr2t − c02

¢
=

1, ∀t then β1 cannot be identified from the intercept δ1: therefore, each repli-
cation is repeated until I

¡
yr2t − c02

¢
is different from being a vector of all zeros

or ones.

Experiment 2: β1 = 0.5. In this case the DGP is given by the reduced form
obtained in (13), where the value πd = 0.5 is chosen; further, the error terms
urit and the explanatory variables x

r
it are generated as in Experiment 1.

The goodness of fit is controlled for by means of the slope coefficients α1
and α2. Due to the endogeneity induced by the indicator functions I

¡
yrit − c0i

¢
,

we follow the approach proposed in Pesaran and Smith (1994), and employ the
prediction errors vrit to compute the coefficients of determination. The prediction
errors vrit are defined as

vrit = yrit − E [yrit |zr
t ] = yrit − δi − αix

r
it − βi Pr

£
yrjt − cj > 0 |zr

t

¤
, i, j = 1, 2, i 6= j,

the general expression for Pr [yit − ci > 0 |zr
t ] being derived in Appendix B.

Therefore, R2i , i = 1, 2 may be computed by simulation as

R2i =

PR
r=1

R

"
1−

PT
t=1 (v

r
it)
2PT

t=1 (y
r
it − ȳri )

2

#

where ȳri =
³PT

t=1 y
r
it

´.
T . We set α1 = α2 = α and consider two cases,

α = 0.5 and α = 1, which respectively correspond to R2i ' 0.5 and R2i ' 1,
i = 1, 2.
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Finally, unconditional crises probabilities are controlled for by means of the
parameters δ1 and δ2. These probabilities are computed by simulation as

πi = Pr [y
r
it − ci > 0] =

PR
r=1

R

ÃPT
t=1 I

¡
yrit − c0i

¢
T

!
and δi is chosen so to control for πi. We set π1 ' π2 ' π = 0.005, 0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50.

6.2 Bias and RMSE

The bias of the CFIML estimator decreases with the sample size T and with
the probability of crisis π (up to π = 0.5), while it does not generally show any
clear correlation with α (and therefore with the goodness of fit of the model);
also, the bias does not seem to depend upon the magnitude of β1. Considering
the GIVE estimators, the bias decreases with the sample size T and with the
probability of crisis π (although in a more erratic way in the case m = 1) as well
as with α, this last feature being driven by a strengthening in the instruments.
The bias of the GIVE estimators follows an unclear pattern in relation to the
magnitude of β1: for α = 0.5 it looks like an increase in β1 generally leads
to an increase in the bias, probably because the instruments become slightly
weaker; however such an effect does not seem to be present when α = 1 and
the instruments are therefore stronger. Dealing with the performance of the
estimators for m = 1 and m = 6, the latter results in a lower value of the bias
for low values of π (such as π = 0.005 and π = 0.01). Finally, the bias of the
CFIML estimator is lower than that of the GIVE estimators for virtually any
combination of T and π.
The RMSE of the CFIML estimator decreases with the sample size T and

with the probability of crisis π, a pattern similar to that of the bias; it also
diminishes with α, while it does not show any clear pattern related to the
magnitude of β1. As far as the GIVE estimators are concerned, their bias
decreases with T and π (although in a more erratic way in the case m = 1)
as well as with α (this last feature confirming one more time the presence of
the weak instruments problem), while no clear pattern seems to be related to
the magnitude of β1; also, the GIVE estimator with m = 6 has lower RMSE
compared to that with m = 1, although the difference tends to disappear as
both T and π increase. Finally, the CFIML estimator is always more efficient
than the GIVE estimators, although the efficiency loss diminishes with T and
π as well as with α: for example, in the case of Experiment 2 with α = 0.5,
if T = 50 and π = 0.005 the efficiency loss of using the GIVE estimator with
m = 6 rather the CFIML is 230%, while it reduces to 122% when T = 1000 and
π = 0.5; further, for α = 1, T = 1000 and π = 0.5 the efficiency loss falls to
69%. The efficiency loss is due to the limited information nature of the GIVE
estimators as discussed in Section 5.2.
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6.3 Size and power

Starting from the CFIML estimator, for T = 50 the actual size never approaches
the nominal size, regardless of the value of π. As the sample size T increases
the actual size tends to approach the nominal size, this feature generally being
true for any value of the probability of crisis π. The only exception arises when
β1 = 0.5 and α = 0.5, where the actual size never reaches the nominal size as T
increases when π = 0.005, 0.01. A possible explanation is that as the magnitude
of β1 increases a higher number of observations in the crisis regime is required
to provide a consistent estimator; in addition, a low value of α combined with
a high value of β1 may raise identification issues, this last feature being in line
with Theorem 1 in Section 5. Considering the GIVE estimators, for m = 1 the
test is generally undersized when α = 0.5, the nominal size being sistematically
reached only when T ≥ 500 and π ≥ 0.10 (apart from the case T = 1000 and
π = 0.50); in the case α = 1 the size performance improves and the nominal
size is reached for a wider combination of T and π. In the case of the GIVE
estimator with m = 6, the nominal value of the size is achieved for a larger
combinations of T and π compared to the case m = 1 both for α = 0.5 and
α = 1; further, analogously to the case m = 1 the size performance is better
when α = 1 than when α = 0.5. Finally, a comparison between the CFIML and
the GIVE estimators shows that the former achieves a better size performance.
The power of the test is computed by testing the null β1 = 0.5 in Experiment

1 and β1 = 1 in Experiment 2. In the case of the CFIML estimator, the power
increases with the sample size T as well as with the probability of crisis π, as
also shown in Figures 2 and 3 below18; it also increases with α. Tests based
upon the GIVE estimators show a similar behaviour. Further, for α = 0.5 the
GIVE estimator with m = 1 seems to have slightly better power than that with
m = 6, while for α = 1 the estimator with m = 6 seems to provide a better
performance. Finally, the CFIML estimator is clearly more powerful than the
GIVE estimators.
18Comparisons based on the power of the tests are made for combinations of T and π such

that the actual size is equal to the nominal size.
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7 Testing for contagion
Given the model in (1) and (2), testing for contagion from market j to market i is
equivalent to testing the null hypothesis βi = 0 against the one-sided alternative
βi > 0, for i, j = 1, 2 and i 6= j: this is equivalent to testing for linearity in
the equation for yi. The implementation of tests for linearity is an important
issue in the econometrics literature; for the case of SETAR models (which are a
particular case of the model in (1) and (2)) a comprehensive survey can be found
in Hansen (1999). The main problem arises because under the null hypothesis
βi = 0 the threshold parameter cj is not identified. This is an example of
the Davies problem, named after the work by Davies (1977, 1987); the problem
describes the situation where a nuisance parameter is not identified under the
null hypothesis, so that standard testing procedures cannot be applied.
It is therefore important to understand what the Davies problem actually

involves and what kind of solutions have been proposed so far in the econometric
literature. As a starting point consider the univariate model

y2t = α02x2t + β02h (xt, c1) + u2t, (26)

where x2t is a k2 × 1 subvector of the k × 1 vector of predetermined variables
xt, β2 and c1 are p× 1 a q× 1 vectors of parameters respectively, and h (·, · ) is
a m×1 vector of functions. Further, suppose the interest lies in testing the null
hypothesis H0 : β2= 0. If c1 was known the model in (26) could be estimated
by OLS, and the relevant test statistic for the null hypothesis β2= 0 would
be distributed as χ2p. However, since c1 is generally unknown, then it can be
estimated by grid search while estimates of α2 and β2 are obtained by OLS;
further, under H0 the vector of parameters parameter c1 is not identified and
the null hypothesis β2= 0 cannot be tested in the usual manner. In order to
solve the problem, Davies (1977) proposes to apply Roy’s type I principle and
take the supremum of the LM, Wald or LR statistic over the admissible values
of c1. The resulting test statistic can therefore be seen as an empirical process,
meaning that the underlying stochastic process depends both on time and on
the nuisance parameters. However, the distribution of the test statistic will in
general be non-standard. Indeed, for given values of c1 the distribution of the
test statistic under the null hypothesis would still be χ2p; however, the joint
distribution of the test statistic cannot be obtained from that of the individual
test statistics, as the latter are correlated across different values of the c1: as
we will see, the joint distribution can only be tabulated for special cases.
As discussed in Pesaran (1981), a special case arises when h (xt, c1) = c01xt,

so that (26) becomes

y2t = α02x2t + β2 (c
0
1xt) + u2t,

β2 being a scalar
19 . In this case, application of Roy’s type I principle for testing

β2 = 0 provides a test statistic distributed as χ2q, which is equivalent to that

19A formal proof of the intuition presented in Pesaran (1981) is derived in McAleer and
Pesaran (1986).
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used for testing (β2c1) = 0. This means that the lack of knowledge of the true
value of c1 leads to a loss in power that can be quantified20.
Hansen (1996b) extends the work in Pesaran (1981) by considering the gen-

eral set up given by (26) without imposing any restriction upon the parametric
form of h (xt, c1). Since for given values of c1 the model can be estimated by
OLS, the vector of scores is obtained in closed form, and the OLS estimator
of the relevant parameters (including β2) is itself available in closed form as
a function of the scores. Hansen (1996b) proposes to test the null hypothesis
β2 = 0 by constructing a Wald statistic: for given values of c1, under the null
hypothesis the test statistic is distributed as χ2p; however, the critical values of
the joint distribution arising from taking the supremum of the Wald statistic
over c1 can be obtained by simulation since the OLS estimator has closed form
in terms of the scores21 . Notice that in this general case the loss in power in-
duced by the Davies problem cannot be quantified, due to the nonlinear nature
of the model in (26).
The model in (1) and (2) can be seen as an extension of (26) to a system of

simultaneous equations; therefore, the testing procedure developed in Hansen
(1996b) cannot be directly applied. However an extension to it can be easily
obtained if the model is estimated by instrumental variables, as discussed in
Section 5.2. However, as shown in the Monte Carlo experiment conducted in
Section 6, the GIVE estimator is likely to suffer from a weak instruments prob-
lem as well as from efficiency issues: therefore, statistical inference based upon
it is likely to provide misleading results.
In order to test for contagion in the model in (1) and (2) we therefore need

a testing procedure based upon the CFIML estimator developed in Section 5.3.
However, since in this case the scores are not available in closed form, a direct
extension of the Wald statistic proposed in Hansen (1996b) is not available. We
therefore deploy the general testing procedure proposed in Hansen (1992, 1996a)
to deal with the presence of the Davies problem. The idea is to work directly
with the likelihood ratio function, so that no assumption about the scores is
needed. More precisely, the likelihood ratio can be seen as a function of the
nuisance parameter, the likelihood ratio statistic being the supremum over the
admissible values of the nuisance parameters; by using empirical process theory,
an upper bound to the asymptotic distribution of a suitably standardised likeli-
hood ratio statistic can be found. However, since the asymptotic distribution is
a bound, the resulting test may be conservative (or undersized), meaning that a
loss in power may be suffered. The procedure used to obtain the critical values
is discussed in Appendix C.

20This is because of the inverse relationship between power and number of degrees of freedom
in a noncentral χ2 test with a given noncentrality parameter.
21Following Andrews and Ploberger (1994), Hansen (1996b) also considers tests statistic

resulting from taking the average and exponential average of the χ2 processes, since they are
supposed to deliver superior local power under the null hypothesis.
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8 Empirical application

8.1 Data and model specification

In this section we apply the model given in (1) and (2) to analyse the interaction
between the New York Stock Exchange (NYSE) and the other major European
stock markets, namely London, Frankfurt, Zurich and Paris. In order to carry
out the analysis we make use of daily stock market prices for the S&P 500 (New
York), FTSE 100 (London), DAX 30 (Frankfurt), SMI (Zurich) and CAC 40
(Paris) recorded at 16:00 London time (pseudo-closing prices), where all the
stock market indices are in US dollars; the data were obtained from Datastream
for the period 3 August 1990 to 30 June 2005.
All the above mentioned indices describe the behaviour of the biggest firms.

The S&P 500 is a capitalisation-weighted index of 500 stocks of US public com-
panies; it approximately represents 75% of total market capitalisation. The
FTSE 100 is the principal UK index; it consists of the UK’s biggest companies
by market capitalisation. The DAX 30 includes the 30 largest German secu-
rities according to market capitalisation and turnover. The SMI is made of a
maximum of 30 of the largest and most liquid stocks in the Swiss market. The
CAC 40 is a weighted-average index of 40 stocks, the weights being based upon
the closing price of the last traded day.
Pseudo-closing prices were chosen over actual closing prices because interna-

tional stock markets have different trading hours. Indeed London trades from
8:00 to 16:30 London time; New York from 9:30 to 16:00 Eastern standard time
(which corresponds to 14:30 to 21:00 London time); Frankfurt, Paris and Zurich
trade from 9:00 to 17:30 local time (which corresponds to 8:00 to 16:30 London
time). Therefore, the use of daily closing prices in our analysis would have led
to an underestimation of the correlation between stock markets themselves22.
For each market i the spot prices at time t (Pit) were converted into contin-

uously compounded returns as

rit = (logPit − logPi,t−1) ∗ 100, i = 1, 2.

After removing holidays in each countries, we were left with 3741 observations
of common trading days for the five series23 . Descriptive statistics for the re-
sulting stock market returns and the correlations between them are provided in
Table 3. Average daily returns are all positive, with New York providing the
highest rate followed by Zurich, Frankfurt, Paris and London. The S&P 500 is
also the least volatile index, as evidenced by the value of its sample standard
deviation, followed by the FTSE 100, the SMI, the CAC 40 and the DAX 30.
The measure of skewness shows that the S&P 500, the DAX 30 and the SMI
are negatively skewed compared to the normal distribution, while the FTSE 100

22The use of pseudo-closing prices to avoid the problem of non-synchronous data was first
suggested in Martens and Poon (2001). Also, the Japanese stock market had to be excluded
since it does not have any common trading time with any of the other stock stock markets we
consider.
23For each market we defined as holidays any day where the return is exactly equal to zero.
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and the CAC 40 are positively skewed; in addition, all returns’ distributions are
highly leptokurtic compared to the normal distribution. The Jarque-Bera test
for normality rejects the null hypothesis at 1% level for all returns. Finally,
the correlation between the S&P 500 and any other market is lower than the
correlation between any other market: this may be due to the significant time
difference in local time between New York and the other markets.
In carrying out the empirical analysis, we first note that a crisis is associated

with an extreme negative value of rit, meaning that a crisis takes place whenever
rit < −ci, or equivalently −rit − ci > 0; the crisis indicator is then defined as

I (−rit − ci) , i = 1, 2.

Further, in order to define the dependent variable yit recall that stock market
returns exhibit a high degree of conditional heteroskedasticity, as extensively
discussed in the literature following the work by Engle (1982) and Bollerslev
(1986): therefore, the returns rit have to be devolatised. The variable yit is
then defined as

yit = −
rit

σi|t−1
, i = 1, 2,

where
σ2i|t−1 = Var [rit |Ωi,t−1 ] ,

Ωi,t−1 being the information set up to time t − 1. The conditional standard
deviation σi|t−1 is estimated by fitting the returns rit with the GARCH(1, 1)−
t model introduced by Bollerslev (1987): compared to the standard GARCH
model with conditionally Gaussian disturbances, this represents a more flexible
approach to account for the leptokurtosis in stock market returns evidenced in
Table 3. The GARCH(1, 1) − t model, specified in terms of the returns rit, is
given by

rit = μi +
5P

k=1

γikri,t−k + εit,

εit = zitσi|t−1 ,
zit |Ωi,t−1 ∼ iidtv (0, 1) ,
σ2i|t−1 = ω + αε2i,t−1 + βσ2i|t−2 ,

(27)

where v denotes the number of degrees of freedom of the t distribution24. The
market returns rit are modelled as an autoregressive process of order five so to
control for serial correlation as well as weekly effects. The model specification
then becomes

ŷ1t = δ1 +α1
0x1t + β1I (−r2t − c2) + u1t, (28)

ŷ2t = δ2 +α2
0x2t + β2I (−r1t − c1) + u2t, (29)

where
ŷit = −

rit
σ̂i|t−1

, xit = (ŷi,t−1, . . . , ŷi,t−5)
0
, i = 1, 2,

24The GARCH(1, 1)− t model in (27) is estimated by means of the procedure developed by
Laurent and Peters (2005).
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σ̂i|t−1 being the estimator of σi|t−1 arising from (27), and i = 2 always referring
to the S&P 500. In this way we are left with 3736 observations. The threshold
parameters ci are estimated by grid search, while the remaining set of parameters
is estimated by the CFIML procedures discussed in Section 5.3. For each stock
market return the width of the grid is chosen so to include observations between
the bottom 0.5% and 20% quantiles of the empirical distribution of rit. The
resulting intervals for the threshold values are cS&P500 ∈ [0.65, 3.40], cFTSE100 ∈
[0.75, 3.40], cSMI ∈ [0.80, 3.60], cDAX30 ∈ [0.90, 4.70] and cCAC40 ∈ [0.90, 4.10],
with a step equal to 0.01.

8.2 Results

Results from the estimation of (28) and (29) are reported in Table 4. Starting
from the effect of the NYSE upon European markets, we can see that the S&P
500 affects all the other indices as soon as it return goes below −2.69%; the
only expection is the DAX 30, which reacts whenever the S&P 500 goes falls
below −2.44%. However, the effect of a crisis varies from market to market: it
causes a fall of 0.42% in the FTSE 100, 0.58% in the DAX 30, 0.57% in the SMI
and 0.64% in the CAC 40. This result can be interpreted as evidence in favour
of the FTSE 100 being significantly the least vulnerable amongst the European
indices to shocks generated by the S&P 500.
Turning the attention to the effect of the European markets on the S&P 500,

it can be seen that the FTSE 100 seems to be the index that most often affects
the S&P 500 (14% of the times), followed by the CAC 40 (4%), the DAX 30
(2%) and SMI (0.7%). It is also interesting to note that the higher the number
of times an index affects the S&P 500, the lower the magnitude of the effect
(that is the magnitude of the corresponding contagion coefficient) is.
However, this set of results ought to be interpreted with cautiouness, as

identification issues may arise. Identification of the model specification is as-
sessed by means of the Wald statistics W , which tests the joint significance of
the equation specific explanatory variables. We can therefore see that while the
models for the FTSE 100 and CAC 40 are identified (although the null of the
coefficients of lagged values of the S&P 500 being simultaneously equal to zero
is only rejected at 5% level), in the other two cases identification issues do arise.
Table 5 reports the results of the application of the test for contagion dis-

cussed in Section 7. The null hypothesis of no contagion from each of the
European markets to the NYSE is considered; this is equivalent to testing the
null hypothesis β2 = 0 in the model specification given in (28) and (29). As it
can be seen, in each case the null hypothesis cannot be rejected, meaning that
the NYSE seems to be immune to crises occurring in any of the major European
stock markets. This result however has to be interpreted bearing in mind the
identification issues discussed above.
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9 Conclusion
This paper deals with estimation and inference in the canonical model of con-
tagion developed in Pesaran and Pick (2006), which represents a two-equation
nonlinear simultaneous equations model. As far as estimation is concerned, the
likelihood function is obtained, which takes into account the coherency issues of
the model. Using Monte Carlo simulation, the resulting Full Information Maxi-
mum Likelihood estimator is compared to the single equation GIVE estimators
proposed in Pesaran and Pick (2006): the former provides better performance
than the latter, which also suffer from a weak instruments problem and face effi-
ciency issues. Statistical inference aimed at assessing the presence of contagion
turns out to be nonstandard due to the presence of an unidentified nuisance
parameter under the null hypothesis.
The canonical model is then applied to stock market returns. From the

empirical results the New York Stock Exchange seems to be unaffected by a
crisis taking place in any of the major European stock markets. However, these
results have to be interpreted with cautiouness due to the limited number of
crisis periods and to the presence of identification issues.
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A Further analysis of the model
Consider first the case β1, β2 < 0. Taking into account (3) and (4), the model
in (1) and (2) can be written as

Y1t = W1t + I (−Y2t) ,
Y2t = W2t + I (−Y1t) .

The five mutually exclusive solution regions are then given by

Region A:
½

W1t ≥ 0
W2t ≥ 0

Region B:
½

W1t ≥ 0
−1 ≤W2t < 0

∪
½

W1t ≥ −1
W2t < −1

Region C:
½

W1t < −1
W2t < −1

Region D:
½

W1t < −1
−1 ≤W2t < 0

∪
½

W1t < 0
W2t ≥ 0

Region E:
½
−1 ≤W1t < 0
−1 ≤W2t < 0
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and the reduced form by½
y1t = w1t ≤ c1
y2t = w2t ≤ c2

(Region A)

½
y1t = w1t + β1 ≤ c1
y2t = w2t > c2

(Region B)

½
y1t = w1t + β1 > c1
y2t = w2t + β2 > c2

(Region C)

½
y1t = w1t > c1
y2t = w2t + β2 ≤ c2

(Region D)

½
y1t = w1t + (1− dt)β1
y2t = w2t + (1− dt)β2

(Region E)

the process dt being defined in (11). The normalising term for the likelihood
function is equal to

qt = 1 + Pr [E |zt ]

the analytical expression for Pr [E |zt ] is the same as that obtained in (16).
Therefore, the expression for the joint density function given in (23) remains
valid also for the case β1, β2 < 0.
Consider now the case β1 < 0, β2 > 025 . The model can be equivalently

written as

Y1t = W1t + I (Y2t) ,

Y2t = W2t + I (−Y1t) .

In this case only four mutually exclusive solution regions arise

Region A:
½

W1t ≥ −1
W2t > 0

Region B:
½

W1t ≥ 0
W2t ≤ 0

Region C:
½

W1t < 0
W2t ≤ −1

Region D:
½

W1t < −1
W2t > −1

while in region E defined as

Region E:
½
−1 ≤W1t < 0
−1 < W2t ≤ 0

25The case β1 > 0, β2 < 0 is analogous to that β1 < 0, β2 > 0 and therefore omitted.
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no solution arises. The reduced form is then given by½
y1t = w1t + β1 ≤ c1
y2t = w2t > c2

(Region A)

½
y1t = w1t ≤ c1
y2t = w2t ≤ c2

(Region B)

½
y1t = w1t > c1
y2t = w2t + β2 ≤ c2

(Region C)

½
y1t = w1t + β1 > c1
y2t = w2t + β2 > c2

(Region D)

and no multiple equilibria arises. In this case the normalising term qt is given
by

qt = 1− Pr [E |zt ]

where the analytical expression for Pr [E |zt ] is of the same magnitude but
opposite sign compared to the expression provided in (16). Therefore, also for
the case β1 < 0, β2 > 0 the expression for the joint density function given in
(23) remains valid.

B Further mathematical results
From the reduced form equation (13) it follows that

Pr [y1t − c1 > 0 |zt ] = Pr [A |zt ] Pr [y1t − c1 > 0 |A;zt ]
+Pr [B |zt ] Pr [y1t − c1 > 0 |B;zt ]
+Pr [C |zt ] Pr [y1t − c1 > 0 |C;zt ]
+Pr [D |zt ] Pr [y1t − c1 > 0 |D;zt ]
+Pr [E |zt ] Pr [y1t − c1 > 0 |E;zt ]

where

Pr [y1t − c1 > 0 |A;zt ] = Pr [y1t − c1 > 0 |B;zt ] = 1

Pr [y1t − c1 > 0 |C;zt ] = Pr [y1t − c1 > 0 |D;zt ] = 0

Pr [y1t − c1 > 0 |E;zt ] = (1− πd)

so that

Pr [y1t − c1 > 0 |zt ] = Pr [A |zt ] + Pr [B |zt ] + (1− πd) Pr [E |zt ]

and taking into account (9)

Pr [y1t − c1 > 0 |zt ] = Pr [W1t > 0 |zt ] + Pr [−1 < W1t ≤ 0,W2t > 0]
+ (1− πd) Pr [−1 < W1t ≤ 0,−1 < W2t ≤ 0] .
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In the same way, we obtain

Pr [y2t − c2 > 0 |zt ] = Pr [W2t > 0 |zt ] + Pr [W1t > 0,−1 < W2t ≤ 0]
+ (1− πd) Pr [−1 < W1t ≤ 0,−1 < W2t ≤ 0]

so that in general

Pr [yit − ci > 0 |zt ] = Pr [Wit > 0 |zt ] + Pr [−1 < Wit ≤ 0,Wjt > 0]
+ (1− πd) Pr [−1 < Wit ≤ 0,−1 < Wjt ≤ 0]

for i, j = 1, 2 and i 6= j.

C Test for contagion
Let ‘⇒’ denote weak convergence with respect to the uniform metric and ‘k·k’
the Euclidean metric. In order to test for contagion, we apply the procedure
suggested in Hansen (1992, 1996a). Consider the model

y1t = δ01zt +α01x1t + β1I (y2t − c2) + u1t,

y2t = δ02zt +α02x2t + β2I (y1t − c1) + u2t,

and suppose we are interested in testing

H0 : β2 = 0, H1 : β2 > 0,

which is equivalent to testing for linearity in the equation for y2t. Define the
vectors of parameters

θ =
¡
δ01,α

0
1, β1, σ

2
1, δ

0
2,α

0
2, c2, σ

2
2, σ12

¢0
, ϕ =

¡
β2,θ

0¢0 ;
the log-likelihood of the model can be written as

LT (c1,ϕ) =
TX
t=1

lt (c1,ϕ) =
TX
t=1

log f (y1t, y2t |zt ) ,

where f (y1t, y2t |zt ) is the joint density function of y1t and y2t, zt is defined
as

zt =
³
z
0

t,x
0

1t,x
0

2t

´0
,

and the subscript T denotes the sample size. The concentrated log-likelihood
function is given by

bLUT (c1) = LT

³
c1, ϕ̂

U (c1)
´
=

TX
t=1

lt

³
c1, ϕ̂

U (c1)
´
,

where
ϕ̂U (c1) =

³
β̂
U

2 (c1) , θ̂
U
(c1)

0
´0
= argmax

ϕ
[LT (c1,ϕ)] .
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The concentrated log-likelihood function has large-sample counterpart given by

LUT (c1) = LT
¡
c1,ϕ

U (c1)
¢
,

where

ϕU (c1) =
³
βU2 (c1) ,θ

U (c1)
0
´0

= lim
T→∞

½
argmax

ϕ

1

T
E [LT (c1,ϕ)]

¾
= lim

T→∞

(
argmax

ϕ

1

T
E

"
TX
t=1

lt (c1,ϕ)

#)
= argmax

ϕ
E [lt (c1,ϕ)]

is the pseudo-true value of ϕ for fixed c1. Note that ϕ̂
U (c1) is a consistent

estimator for ϕU (c1) with rate of convergence
√
T and uniformly in c1, that is

√
T sup

c1

°°°ϕ̂U (c1)−ϕU (c1)
°°° = Op (1) .

The concentrated likelihood ratio (LR) as a function of c1 can be written asdLRT (c1) = bLUT (c1)− eLRT (c1) , (30)

where eLRT (c1) denotes the restricted value of the log-likelihood function under
the null hypothesis β2 = 0; eLRT (c1) is defined as

eLRT (c1) = LT

³
c1, ϕ̃

R (c1)
´
=

TX
t=1

lt

³
c1, ϕ̃

R (c1)
´
,

where
ϕ̃R (c1) =

³
0, θ̃

R
(c1)

0
´0

θ̃
R
(c1) being determined as

θ̃
R
(c1) = argmax

θ
[LT (c1, 0,θ)] ,

both LT (c1, 0,θ) and θ̃
R
(c1) being independent of c1. The LR process has

large-sample counterpart given by

LRT (c1) = LUT (c1)− LRT (c1) ,

where
LRT (c1) = LT

¡
c1,ϕ

R (c1)
¢
,

where
ϕR (c1) =

³
0,θR (c1)

0
´0
,
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θR (c1) being defined as

θR (c1) = argmax
θ
E [lt (c1, 0,θ (c1))] .

The LR statistic is then defined asdLRT = sup
c1

dLRT (c1) ,

dLRT (c1) being defined in (30).
Define the expected value of the LR process as

RT (c1) = E [LRT (c1)] = TE
£
lt
¡
c1,ϕ

U (c1)
¢
− lt

¡
c1,ϕ

R (c1)
¢¤
.

This allows us to define the centred version of the LR process asbQT (c1) =dLRT (c1)−RT (c1)

and its large-sample counterpart as

QT (c1) = LRT (c1)−RT (c1) .

Notice that under the null hypothesis RT (c1) ≤ 0; therefore

LRT (c1) ≤ QT (c1)

so that the empirical process LRT (c1) has an upper bound given by the process
QT (c1).
Assume

1√
T
QT (c1)⇒ Q (c1) ,

where Q (c1) is a zero mean Gaussian process with covariance function26

K
³
c
(i)
1 , c

(j)
1

´
= lim

T→∞

1

T
E
h
QT

³
c
(i)
1

´
QT

³
c
(j)
1

´i
= lim

T→∞

1

T
E

("
TX
t=1

qt

³
c
(i)
1

´#" TX
t=1

qt

³
c
(j)
1

´#)
= E

h
qt

³
c
(i)
1

´
qt

³
c
(j)
1

´i
,

and associated variance function

V (c1) = K (c1, c1)

26Note that the equality

K c
(i)
1 , c

(j)
1 = E qt c

(i)
1 qt c

(j)
1

does not generally hold, as it requires uncorrelated likelihood components qt (c1). This would
not be the case if the underlying model was a Markow Switching Model, as discussed in Hansen
(1996) expand with connections to Markov Switching models.
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where

qt (c1) = lt

³
c1, β

U
2 (c1) ,θ

U (c1)
´
− lt

³
c1, 0,θ

R (c1)
´
− 1

T
RT (c1) .

Therefore, K
³
c
(i)
1 , c

(j)
1

´
can be estimated as

bKT

³
c
(i)
1 , c

(j)
1

´
=

TX
t=1

q̂t

³
c
(i)
1

´
q̂t

³
c
(j)
1

´
,

where

q̂t (c1) = lt

³
c1, β̂

U

2 (c1) , θ̂
U
(c1)

´
− lt

³
c1, 0, θ̃

R
(c1)

´
− 1

T
dLRT (c1)

and bVT (c1) = bKT (c1, c1). Since LRT (c1) ≤ QT (c1), then

dLRT (c1) ≤ bQT (c1) .

Consider now the standardised LR function

dLR∗T (c1) = dLRT (c1)hbVT (c1)i1/2
and the corresponding standardised LR statistic

dLR∗T = sup
c1

dLR∗T (c1) .
Further, define the processes

bQ∗T (c1) = bQT (c1)hbVT (c1)i1/2
and its large-sample counterpart

Q∗T (c1) =
QT (c1)

[VT (c1)]
1/2

,

where
Q∗T (c1)⇒ Q∗ (c1) ;

Q∗ (c1) is a zero mean Gaussian process defined as

Q∗ (c1) =
Q (c1)

[V (c1)]
1/2
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with covariance function equal to

K∗
³
c
(i)
1 , c

(j)
1

´
=

K
³
c
(i)
1 , c

(j)
1

´
h
V
³
c
(i)
1

´i1/2 h
V
³
c
(j)
1

´i1/2 .
Therefore, under fairly general regularity conditions

Pr
hdLR∗T ≥ x

i
≤ Pr

∙
sup
c1

bQ∗T (c1) ≥ x

¸
→ Pr [SupQ∗ ≥ x]

where
SupQ∗ = sup

c1

Q∗ (c1) .

The distribution of SupQ∗ can be approximated by simulation. This is
because Q∗ (c1) is a Gaussian process with zero mean and unit variance, and

it is completely characterised by the covariance function K∗
³
c
(i)
1 , c

(j)
1

´
, which

can be estimated as

bK∗T ³c(i)1 , c
(j)
1

´
=

bKT

³
c
(i)
1 , c

(j)
1

´
hbVT ³c(i)1 ´i1/2 hbVT ³c(j)1 ´i1/2 .

Therefore, the simulation procedure to compute the distribution of the process
SupQ∗, which is the upper bound to the distribution of the standardised LR
statisticdLR∗T , is made of the following steps:
1. Generate a sample of NID (0, 1) variables {urt}

T
t=1, where the superscript

r denotes the replication.

2. Construct

gLR∗ (c1) =
TX
t=1

q̂t (c1)u
r
thbVT (c1)i1/2 ,

and compute supc1
gLR∗ (c1) for the r − th replication.

3. Repeat steps 1 and 2 above R times: this will provide an approximation
to the distribution of SupQ∗.

Conditional upon the data,gLR∗ (c1) is a zero mean Gaussian process with ex-
act covariance function equal to bK∗T ³c(i)1 , c

(j)
1

´
, which is an asymptotic approx-

imation to K∗
³
c
(i)
1 , c

(j)
1

´
: this means that supc1

gLR∗ (c1) will approximately
have the same distribution as SupQ∗. Therefore, as T → ∞ and R → ∞,
the simulated distribution of supc1

gLR∗ (c1) will be the same as the theoretical
distribution of SupQ∗. The number of replications for the simulated LR test
statistic is R = 2000.
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Table 1: Bias, RMSE, Size and Power in the Case of Experiment 1
Bias RMSE

α1 = α2 = 0.5
(π, T) 50 100 200 500 1000 50 100 200 500 1000

CFIML
0.005 0.3365 0.0978 0.0407 0.0352 0.0090 1.1403 0.9474 0.8232 0.6806 0.5075
0.01 0.1906 0.0530 0.0309 0.0109 -0.0008 1.0172 0.8481 0.7190 0.5022 0.3258
0.05 0.0098 0.0084 -0.0002 0.0040 -0.0009 0.7458 0.5370 0.3500 0.2032 0.1422
0.10 -0.0188 -0.0001 0.0051 0.0016 -0.0021 0.5556 0.3837 0.2607 0.1588 0.1117
0.20 -0.0110 -0.0047 -0.0015 0.0021 0.0010 0.4322 0.3035 0.2093 0.1333 0.0939
0.30 -0.0211 -0.0063 -0.0071 -0.0028 0.0019 0.4114 0.2756 0.1927 0.1254 0.0871
0.40 -0.0189 -0.0112 -0.0106 -0.0045 0.0023 0.4027 0.2775 0.1913 0.1230 0.0858
0.50 -0.0233 -0.0040 -0.0036 -0.0022 -0.0001 0.4071 0.2778 0.1943 0.1215 0.0849

GIVE, m = 1
0.005 23.3750 5.0538 -1.3774 -5.4219 0.6535 860.7200 249.6600 87.9290 166.4500 508.6500
0.01 7.5300 -2.6424 0.7927 -1.3885 -0.1173 159.0100 115.6700 54.1780 54.5050 4.9310
0.05 27.0600 0.2628 -0.3140 -0.0448 -0.0219 1009.0000 32.6530 5.6176 1.3038 0.7818
0.10 -0.4459 -1.6106 -0.1570 -0.0227 -0.0115 31.7830 53.9930 2.8133 0.7032 0.4491
0.20 0.3352 0.0203 -0.0789 -0.0093 0.0070 65.8750 10.4750 0.7326 0.4214 0.2793
0.30 0.2083 -0.0919 -0.0604 -0.0062 -0.0054 15.3230 1.4431 0.5897 0.3420 0.2272
0.40 -0.2902 -0.0932 -0.0519 -0.0057 -0.0059 6.3756 1.2605 0.5162 0.3132 0.2079
0.50 0.0403 -0.0834 -0.0486 -0.0060 -0.0053 5.8288 1.5639 0.5091 0.3094 0.2059

GIVE, m = 6
0.005 1.5123 1.2912 1.1796 0.6736 0.5867 3.6240 4.8315 5.9986 7.3796 6.0088
0.01 1.2101 1.0030 0.9293 0.5643 0.3472 3.3271 4.3309 5.2081 4.4033 2.7120
0.05 0.8519 0.5646 0.3313 0.1807 0.1080 2.5011 2.0547 1.4033 0.9200 0.6378
0.10 0.6285 0.3964 0.2228 0.1187 0.0626 1.7170 1.2117 0.8830 0.5589 0.3986
0.20 0.4708 0.2808 0.1377 0.0731 0.0345 1.0363 0.8172 0.5768 0.3777 0.2653
0.30 0.4213 0.2410 0.1088 0.0536 0.0261 0.8877 0.6832 0.4859 0.3208 0.2202
0.40 0.3957 0.2296 0.0980 0.0497 0.0207 0.8446 0.6461 0.4524 0.2970 0.2026
0.50 0.3918 0.2182 0.0973 0.0477 0.0200 0.8429 0.6359 0.4471 0.2972 0.2002

α1 = α2 = 1
CFIML

0.005 0.3195 0.1408 0.0272 0.0187 0.0030 1.1148 0.9466 0.8193 0.6585 0.4613
0.01 0.2005 0.0498 0.0183 0.0321 -0.0090 1.0159 0.8181 0.7357 0.4733 0.2981
0.05 0.0065 -0.0087 -0.0030 0.0045 -0.0010 0.7250 0.4975 0.3186 0.1944 0.1370
0.10 0.0072 -0.0065 -0.0015 0.0029 -0.0012 0.5276 0.3578 0.2434 0.1488 0.1054
0.20 -0.0159 -0.0066 -0.0038 0.0024 -0.0003 0.4006 0.2745 0.1913 0.1202 0.0846
0.30 -0.0052 0.0017 0.0016 0.0009 0.0021 0.3658 0.2503 0.1815 0.1139 0.0768
0.40 -0.0107 -0.0034 -0.0042 0.0001 0.0014 0.3569 0.2374 0.1704 0.1084 0.0745
0.50 -0.0153 -0.0007 -0.0085 -0.0021 -0.0006 0.3602 0.2415 0.1709 0.1079 0.0748

GIVE, m = 1
0.005 21.4380 -0.7559 0.4001 0.4183 -0.2641 859.5400 65.2020 57.1470 30.3990 6.1158
0.01 1.3279 -0.9211 -1.0822 -0.3590 -0.0797 46.0970 83.6690 17.7820 6.7448 2.2480
0.05 20.9690 -0.1499 -0.1164 -0.0076 -0.0080 934.8900 7.7591 1.3300 0.7427 0.4837
0.10 -0.1055 -0.0948 -0.0499 -0.0006 -0.0027 5.7757 1.2589 0.6867 0.4168 0.2783
0.20 -0.0964 -0.0411 -0.0231 0.0024 -0.0009 1.0901 0.6372 0.4114 0.2578 0.1742
0.30 -0.0549 -0.0270 -0.0176 0.0023 -0.0007 0.7812 0.4951 0.3274 0.2088 0.1416
0.40 -0.0387 -0.0217 -0.0152 0.0025 -0.0003 0.6700 0.4460 0.2987 0.1903 0.1289
0.50 -0.0398 -0.0218 -0.0140 0.0024 -0.0003 0.6624 0.4397 0.2921 0.1872 0.1266

GIVE, m = 6
0.005 1.1439 0.9439 0.7949 0.3483 0.1124 2.4759 3.0206 3.6763 4.2947 2.7626
0.01 0.9248 0.7151 0.3537 0.2110 0.0902 2.2931 2.8683 3.2232 2.2001 1.1328
0.05 0.4628 0.2318 0.1040 0.0394 0.0244 1.8185 1.3823 0.8378 0.4971 0.3399
0.10 0.2766 0.1199 0.0492 0.0221 0.0135 1.1910 0.7574 0.5127 0.3226 0.2247
0.20 0.1665 0.0727 0.0226 0.0148 0.0074 0.7422 0.5100 0.3573 0.2254 0.1581
0.30 0.1285 0.0453 0.0153 0.0119 0.0048 0.6303 0.4259 0.3040 0.1933 0.1343
0.40 0.1176 0.0374 0.0115 0.0110 0.0040 0.5799 0.4030 0.2825 0.1812 0.1245
0.50 0.1194 0.0350 0.0099 0.0109 0.0032 0.5746 0.4028 0.2771 0.1794 0.1222



(Table 1 continued)
Size (5% level, H0 : β1 = 0.00) Power (5% level, H0 : β1 = 0.50)

α1 = α2 = 0.5
(π, T) 50 100 200 500 1000 50 100 200 500 1000

CFIML
0.005 0.1385 0.0715 0.0505 0.0600 0.0555 0.1030 0.0985 0.1090 0.1775 0.2875
0.01 0.1020 0.0650 0.0600 0.0645 0.0565 0.1025 0.1105 0.1430 0.2815 0.4310
0.05 0.0730 0.0720 0.0630 0.0465 0.0525 0.1605 0.2235 0.3535 0.6830 0.9295
0.10 0.0645 0.0605 0.0565 0.0500 0.0520 0.1940 0.3060 0.5115 0.8775 0.9945
0.20 0.0575 0.0530 0.0540 0.0525 0.0515 0.2410 0.4115 0.6760 0.9665 0.9995
0.30 0.0665 0.0495 0.0495 0.0555 0.0435 0.2795 0.4410 0.7495 0.9835 1.0000
0.40 0.0660 0.0525 0.0510 0.0570 0.0530 0.2660 0.4780 0.7670 0.9865 1.0000
0.50 0.0655 0.0605 0.0590 0.0515 0.0465 0.2805 0.4655 0.7610 0.9880 1.0000

GIVE, m = 1
0.005 0.0055 0.0040 0.0030 0.0045 0.0080 0.0050 0.0025 0.0015 0.0030 0.0055
0.01 0.0065 0.0040 0.0035 0.0065 0.0155 0.0035 0.0015 0.0010 0.0065 0.0120
0.05 0.0075 0.0135 0.0175 0.0280 0.0330 0.0035 0.0065 0.0075 0.0295 0.0710
0.10 0.0150 0.0230 0.0280 0.0365 0.0360 0.0040 0.0105 0.0225 0.0765 0.1725
0.20 0.0255 0.0315 0.0350 0.0415 0.0385 0.0100 0.0165 0.0535 0.2020 0.4295
0.30 0.0315 0.0370 0.0350 0.0425 0.0385 0.0105 0.0225 0.0860 0.3020 0.5950
0.40 0.0340 0.0380 0.0365 0.0440 0.0390 0.0115 0.0310 0.1125 0.3700 0.6880
0.50 0.0360 0.0400 0.0370 0.0440 0.0405 0.0145 0.0300 0.1205 0.3775 0.6910

GIVE, m = 6
0.005 0.1095 0.0585 0.0330 0.0325 0.0355 0.0625 0.0335 0.0180 0.0190 0.0215
0.01 0.0830 0.0480 0.0295 0.0410 0.0395 0.0390 0.0195 0.0195 0.0200 0.0230
0.05 0.0670 0.0520 0.0490 0.0505 0.0450 0.0290 0.0200 0.0220 0.0385 0.0730
0.10 0.0800 0.0700 0.0580 0.0550 0.0515 0.0305 0.0240 0.0290 0.0685 0.1810
0.20 0.1075 0.0815 0.0520 0.0590 0.0485 0.0320 0.0285 0.0490 0.1735 0.4080
0.30 0.1090 0.0845 0.0560 0.0595 0.0460 0.0305 0.0310 0.0700 0.2685 0.5600
0.40 0.1070 0.0840 0.0615 0.0580 0.0435 0.0310 0.0345 0.0915 0.3235 0.6565
0.50 0.1105 0.0890 0.0625 0.0590 0.0410 0.0310 0.0345 0.0895 0.3360 0.6555

α1 = α2 = 1
CFIML

0.005 0.1440 0.0835 0.0665 0.0530 0.0480 0.1105 0.1015 0.1250 0.1530 0.2425
0.01 0.1140 0.0595 0.0655 0.0615 0.0480 0.1105 0.1020 0.1470 0.2320 0.4330
0.05 0.0765 0.0575 0.0585 0.0460 0.0475 0.1520 0.2305 0.3585 0.7195 0.9500
0.10 0.0610 0.0630 0.0520 0.0575 0.0490 0.2065 0.3245 0.5650 0.9195 0.9980
0.20 0.0615 0.0605 0.0470 0.0475 0.0420 0.2755 0.4595 0.7550 0.9885 1.0000
0.30 0.0640 0.0615 0.0560 0.0565 0.0465 0.2990 0.5220 0.8050 0.9945 1.0000
0.40 0.0640 0.0490 0.0530 0.0525 0.0495 0.3310 0.5675 0.8535 0.9975 1.0000
0.50 0.0660 0.0470 0.0520 0.0580 0.0440 0.3410 0.5545 0.8495 0.9985 1.0000

GIVE, m = 1
0.005 0.0090 0.0080 0.0060 0.0110 0.0200 0.0065 0.0055 0.0045 0.0105 0.0195
0.01 0.0110 0.0090 0.0070 0.0200 0.0305 0.0065 0.0040 0.0080 0.0185 0.0335
0.05 0.0165 0.0255 0.0285 0.0395 0.0410 0.0115 0.0215 0.0425 0.0930 0.1605
0.10 0.0240 0.0345 0.0380 0.0440 0.0410 0.0225 0.0405 0.0945 0.2165 0.4305
0.20 0.0320 0.0425 0.0410 0.0470 0.0425 0.0410 0.1035 0.2225 0.5070 0.8180
0.30 0.0415 0.0475 0.0445 0.0470 0.0420 0.0700 0.1585 0.3315 0.6780 0.9495
0.40 0.0430 0.0480 0.0425 0.0475 0.0425 0.0835 0.2005 0.3980 0.7710 0.9770
0.50 0.0465 0.0485 0.0440 0.0480 0.0425 0.0910 0.2070 0.4160 0.7805 0.9830

GIVE, m = 6
0.005 0.1310 0.0770 0.0495 0.0485 0.0415 0.0720 0.0390 0.0330 0.0355 0.0375
0.01 0.0975 0.0550 0.0450 0.0490 0.0475 0.0520 0.0275 0.0330 0.0385 0.0515
0.05 0.0645 0.0500 0.0470 0.0480 0.0455 0.0355 0.0370 0.0595 0.1365 0.2630
0.10 0.0695 0.0510 0.0455 0.0505 0.0480 0.0470 0.0595 0.1165 0.3060 0.5890
0.20 0.0640 0.0580 0.0450 0.0505 0.0495 0.0540 0.1125 0.2560 0.5895 0.8940
0.30 0.0645 0.0520 0.0495 0.0515 0.0490 0.0775 0.1590 0.3570 0.7285 0.9630
0.40 0.0665 0.0500 0.0465 0.0480 0.0455 0.0845 0.1845 0.4035 0.7950 0.9815
0.50 0.0705 0.0535 0.0460 0.0485 0.0385 0.0925 0.1890 0.4160 0.7980 0.9895

Notes: The DGP is y1t = δ1 + α1xr1t + ur1t and y2t = δ2 + α2xr2t + β2I yr1t − c01 + ur2t, with c01 = 1.64 and

urit = γif
r
t + εrit γ2i + 1

−1/2 , where εrit ∼ NID (0, 1), frt ∼ NID (0, 1) and γi ∼ U (0.8, 1), γi fixed in

repeated samples. The regressors are generated by xrit = φih
r
t + qrit φ2i + 1

−1/2 , where qrit ∼ NID (0, 1),
hrt ∼ NID (0, 1) and φi ∼ U (0.8, 1), φi fixed in repeated samples.



Table 2: Bias, RMSE, Size and Power in the Case of Experiment 2
Bias RMSE

α1 = α2 = 0.5
(π, T) 50 100 200 500 1000 50 100 200 500 1000

CFIML
0.005 0.4310 0.2209 0.0928 0.0322 0.0208 1.1169 0.9104 0.8173 0.6992 0.5338
0.01 0.2294 0.0949 0.0072 0.0088 -0.0064 0.9769 0.8235 0.7510 0.5277 0.3444
0.05 0.0018 -0.0098 -0.0078 -0.0138 -0.0030 0.7671 0.5607 0.3624 0.2232 0.1533
0.10 -0.0067 0.0030 -0.0070 -0.0046 -0.0027 0.6022 0.3775 0.2597 0.1647 0.1198
0.20 0.0024 -0.0152 -0.0049 -0.0017 -0.0057 0.4739 0.3099 0.2163 0.1366 0.0960
0.30 -0.0135 0.0052 -0.0004 -0.0017 0.0005 0.4244 0.2904 0.1982 0.1290 0.0913
0.40 -0.0074 0.0011 -0.0075 -0.0055 0.0029 0.4167 0.2887 0.1907 0.1251 0.0877
0.50 -0.0088 0.0041 -0.0056 0.0013 0.0001 0.4089 0.2802 0.2020 0.1218 0.0870

GIVE, m = 1
0.005 9.6778 -4.8751 2.2369 -9.5134 -0.0638 352.3700 683.6100 111.7300 618.6900 29.2580
0.01 2.8382 1.7954 -4.4530 2.4026 -0.4521 105.3900 102.4400 223.7300 158.2600 5.5134
0.05 -0.6524 -0.5033 -2.1864 -0.5075 -0.0276 76.6690 54.9430 88.1270 17.0750 0.8826
0.10 -5.8597 3.9361 -0.1695 -0.0424 0.0087 244.8900 172.2500 1.6451 0.7411 0.4946
0.20 -0.2877 -0.0976 -0.0613 -0.0161 -0.0162 11.7670 2.1990 0.7608 0.4296 0.2939
0.30 -0.7818 -0.1109 -0.0537 -0.0147 -0.0088 21.2290 1.1750 0.6216 0.3445 0.2381
0.40 -0.3326 -2.8504 -0.0568 -0.0309 -0.0063 11.3580 123.2400 0.5294 0.3247 0.2184
0.50 -0.0290 -0.1392 -0.0697 -0.0139 -0.0082 6.8367 1.6120 0.5322 0.2979 0.1997

GIVE, m = 6
0.005 1.6760 1.5688 1.4124 1.0284 0.4905 3.6957 4.7504 6.1861 7.9464 6.4147
0.01 1.3449 1.2179 1.0248 0.6203 0.1280 3.3504 4.3551 5.4093 4.6099 2.9890
0.05 0.8261 0.7258 0.3617 0.1521 0.0952 2.5407 2.4675 1.7684 0.9891 0.6941
0.10 0.6668 0.4999 0.2600 0.1211 0.0705 1.7984 1.3279 0.9580 0.5995 0.4323
0.20 0.5311 0.3135 0.1488 0.0682 0.0251 1.1181 0.8355 0.6072 0.3855 0.2697
0.30 0.4276 0.2609 0.1291 0.0471 0.0201 0.9313 0.7118 0.5336 0.3231 0.2274
0.40 0.4340 0.2481 0.1056 0.0260 0.0188 0.8638 0.6572 0.4640 0.3024 0.2120
0.50 0.4012 0.2379 0.0915 0.0391 0.0162 0.8221 0.6383 0.4359 0.2833 0.1937

α1 = α2 = 1
CFIML

0.005 0.4534 0.1901 0.0931 -0.0083 -0.0066 1.1080 0.9208 0.8427 0.6561 0.4738
0.01 0.2641 0.0866 0.0144 0.0062 -0.0195 0.9666 0.8369 0.7356 0.4779 0.3140
0.05 0.0330 0.0103 -0.0065 -0.0016 -0.0090 0.7117 0.5286 0.3317 0.2061 0.1424
0.10 -0.0025 -0.0111 -0.0098 -0.0066 -0.0084 0.5389 0.3539 0.2437 0.1537 0.1068
0.20 -0.0146 0.0060 -0.0058 -0.0022 0.0008 0.4146 0.2881 0.1941 0.1237 0.0854
0.30 -0.0091 -0.0059 -0.0065 0.0033 -0.0026 0.3836 0.2532 0.1815 0.1147 0.0805
0.40 -0.0074 0.0006 -0.0025 -0.0020 -0.0005 0.3589 0.2543 0.1707 0.1050 0.0776
0.50 -0.0029 -0.0003 -0.0014 0.0012 -0.0018 0.3592 0.2475 0.1727 0.1095 0.0747

GIVE, m = 1
0.005 3.6306 0.6777 2.4918 -0.5485 -0.2554 90.0590 26.6220 108.7800 18.3800 8.3601
0.01 -3.7421 1.3135 0.1553 -0.2521 -0.1108 142.8100 45.0780 24.8280 6.9161 2.4211
0.05 -0.2076 -0.2253 -0.1438 -0.0233 -0.0338 29.9500 5.3762 2.1257 0.7764 0.5271
0.10 -0.2836 -0.0762 -0.0209 -0.0215 -0.0189 3.3814 1.2088 0.7330 0.4286 0.2945
0.20 -0.0469 -0.0354 -0.0278 -0.0070 0.0009 1.3700 0.6527 0.4324 0.2602 0.1781
0.30 -0.0384 -0.0195 0.0000 0.0020 -0.0051 1.0424 0.5014 0.3418 0.2099 0.1479
0.40 -0.2217 -0.0091 -0.0044 -0.0078 0.0008 10.2830 0.4544 0.3017 0.1916 0.1362
0.50 -0.0329 -0.0118 -0.0042 0.0004 -0.0002 0.6776 0.4174 0.2869 0.1807 0.1292

GIVE, m = 6
0.005 1.2721 1.1871 0.8028 0.4517 0.1461 2.4921 2.9440 3.7086 4.1390 3.2506
0.01 1.1110 0.7616 0.5858 0.1017 0.0410 2.5329 2.9238 3.5634 2.1502 1.1860
0.05 0.5461 0.2649 0.1070 0.0655 0.0161 1.8499 1.5439 0.8950 0.5232 0.3579
0.10 0.2438 0.1537 0.0510 0.0147 -0.0035 1.1606 0.7521 0.5385 0.3389 0.2348
0.20 0.2038 0.0605 0.0136 0.0099 0.0065 0.7782 0.5407 0.3562 0.2327 0.1600
0.30 0.1515 0.0559 0.0258 0.0120 0.0007 0.6280 0.4365 0.3098 0.1982 0.1376
0.40 0.1310 0.0490 0.0235 -0.0004 0.0028 0.5653 0.4200 0.2844 0.1828 0.1297
0.50 0.1279 0.0478 0.0214 0.0092 0.0035 0.5670 0.3886 0.2734 0.1758 0.1261



(Table 2 continued)
Size (5% level, H0 : β1 = 0.50) Power (5% level, H0 : β1 = 1.00)

α1 = α2 = 0.5
(π, T) 50 100 200 500 1000 50 100 200 500 1000

CFIML
0.005 0.1060 0.0675 0.0615 0.0765 0.0870 0.0850 0.0775 0.1130 0.1905 0.2735
0.01 0.0770 0.0625 0.0710 0.0785 0.0720 0.0915 0.1145 0.1835 0.2725 0.4145
0.05 0.0780 0.0750 0.0635 0.0545 0.0520 0.1650 0.2300 0.3270 0.6630 0.9045
0.10 0.0765 0.0505 0.0425 0.0490 0.0580 0.2035 0.2745 0.5005 0.8610 0.9900
0.20 0.0790 0.0640 0.0580 0.0500 0.0490 0.2380 0.3900 0.6585 0.9600 1.0000
0.30 0.0660 0.0590 0.0445 0.0590 0.0500 0.2610 0.4245 0.7095 0.9775 1.0000
0.40 0.0670 0.0645 0.0410 0.0575 0.0585 0.2540 0.4355 0.7590 0.9805 1.0000
0.50 0.0710 0.0575 0.0565 0.0495 0.0525 0.2600 0.4450 0.7390 0.9845 1.0000

GIVE, m = 1
0.005 0.0075 0.0055 0.0055 0.0030 0.0050 0.0040 0.0025 0.0055 0.0040 0.0045
0.01 0.0030 0.0035 0.0040 0.0100 0.0130 0.0025 0.0010 0.0005 0.0090 0.0110
0.05 0.0100 0.0110 0.0150 0.0370 0.0355 0.0035 0.0035 0.0075 0.0290 0.0670
0.10 0.0150 0.0230 0.0280 0.0415 0.0495 0.0070 0.0050 0.0205 0.0735 0.1435
0.20 0.0210 0.0270 0.0385 0.0430 0.0405 0.0090 0.0150 0.0450 0.1870 0.4035
0.30 0.0320 0.0385 0.0385 0.0405 0.0440 0.0080 0.0185 0.0815 0.2820 0.5660
0.40 0.0430 0.0415 0.0360 0.0485 0.0495 0.0095 0.0275 0.1055 0.3820 0.6745
0.50 0.0355 0.0445 0.0335 0.0425 0.0395 0.0125 0.0245 0.1180 0.3845 0.7145

GIVE, m = 6
0.005 0.1170 0.0730 0.0355 0.0310 0.0375 0.0605 0.0405 0.0175 0.0200 0.0225
0.01 0.0850 0.0395 0.0415 0.0335 0.0400 0.0350 0.0160 0.0170 0.0190 0.0275
0.05 0.0630 0.0550 0.0390 0.0515 0.0610 0.0220 0.0210 0.0135 0.0365 0.0695
0.10 0.0780 0.0645 0.0635 0.0585 0.0520 0.0315 0.0140 0.0260 0.0635 0.1515
0.20 0.1045 0.0715 0.0665 0.0545 0.0465 0.0305 0.0250 0.0450 0.1665 0.4065
0.30 0.1065 0.0950 0.0705 0.0565 0.0470 0.0190 0.0280 0.0675 0.2490 0.5490
0.40 0.1190 0.0955 0.0690 0.0540 0.0525 0.0275 0.0330 0.0910 0.3375 0.6500
0.50 0.1165 0.0940 0.0590 0.0520 0.0405 0.0250 0.0275 0.0945 0.3415 0.6915

α1 = α2 = 1
CFIML

0.005 0.1195 0.0785 0.0690 0.0575 0.0500 0.0840 0.0815 0.1200 0.1845 0.2550
0.01 0.0880 0.0680 0.0690 0.0540 0.0550 0.0825 0.1080 0.1420 0.2430 0.4385
0.05 0.0695 0.0605 0.0520 0.0510 0.0510 0.1425 0.2220 0.3480 0.6830 0.9445
0.10 0.0655 0.0580 0.0575 0.0520 0.0495 0.1945 0.3280 0.5550 0.9150 0.9985
0.20 0.0610 0.0680 0.0615 0.0535 0.0515 0.2745 0.4390 0.7440 0.9840 1.0000
0.30 0.0735 0.0460 0.0520 0.0615 0.0485 0.3035 0.5280 0.8085 0.9915 1.0000
0.40 0.0715 0.0650 0.0510 0.0410 0.0530 0.3090 0.5505 0.8360 0.9965 1.0000
0.50 0.0725 0.0625 0.0530 0.0590 0.0485 0.3220 0.5635 0.8385 0.9965 1.0000

GIVE, m = 1
0.005 0.0120 0.0070 0.0060 0.0120 0.0300 0.0070 0.0060 0.0035 0.0075 0.0245
0.01 0.0120 0.0105 0.0105 0.0220 0.0300 0.0090 0.0045 0.0105 0.0205 0.0340
0.05 0.0200 0.0230 0.0245 0.0445 0.0470 0.0110 0.0160 0.0275 0.0960 0.1680
0.10 0.0270 0.0260 0.0475 0.0455 0.0450 0.0190 0.0300 0.0895 0.2140 0.4235
0.20 0.0385 0.0520 0.0420 0.0505 0.0430 0.0470 0.0955 0.2055 0.4995 0.7970
0.30 0.0415 0.0390 0.0470 0.0505 0.0485 0.0540 0.1375 0.2960 0.6700 0.9425
0.40 0.0400 0.0535 0.0420 0.0505 0.0590 0.0795 0.1935 0.3675 0.7705 0.9675
0.50 0.0445 0.0425 0.0385 0.0405 0.0495 0.0835 0.1890 0.4110 0.7895 0.9760

GIVE, m = 6
0.005 0.1485 0.0830 0.0540 0.0465 0.0510 0.0640 0.0455 0.0340 0.0265 0.0370
0.01 0.1070 0.0615 0.0410 0.0430 0.0550 0.0560 0.0355 0.0280 0.0400 0.0535
0.05 0.0715 0.0590 0.0420 0.0510 0.0455 0.0315 0.0370 0.0425 0.1250 0.2535
0.10 0.0570 0.0475 0.0530 0.0570 0.0475 0.0395 0.0385 0.1195 0.3020 0.5825
0.20 0.0785 0.0675 0.0455 0.0635 0.0460 0.0605 0.1065 0.2375 0.5735 0.8845
0.30 0.0695 0.0460 0.0520 0.0485 0.0425 0.0630 0.1420 0.3160 0.7105 0.9595
0.40 0.0610 0.0610 0.0460 0.0455 0.0555 0.0715 0.1770 0.3755 0.8000 0.9790
0.50 0.0635 0.0540 0.0480 0.0495 0.0510 0.0820 0.1780 0.4035 0.8120 0.9830

Notes: The DGP is the reduced form in (13), with c0i = 1.64 and urit = γif
r
t + εrit γ2i + 1

−1/2 , where
εrit ∼ NID (0, 1), frt ∼ NID (0, 1) and γi ∼ U (0.8, 1), γi fixed in repeated samples. The regressors are generated

by xrit = φih
r
t + qrit φ2i + 1

−1/2 , where qrit ∼ NID (0, 1), hrt ∼ NID (0, 1) and φi ∼ U (0.8, 1), φi fixed in
repeated samples.



Table 3: Daily stock market returns. Period: 06/08/1990 to 30/06/2005.
Descriptive statistics

Statistics S&P 500 FTSE 100 DAX 30 SMI CAC 40
Mean 0.0323 0.0173 0.0211 0.0311 0.0183
Median 0.0631 0.0250 0.0742 0.0488 0.0498
Maximum 5.7708 8.3361 7.1683 7.0489 10.3560
Minimum -5.5327 -5.6812 -13.0580 -9.1340 -10.2510
Std. Dev. 1.0251 1.0635 1.4215 1.1597 1.3371
Skewness -0.0292 0.1288 -0.3517 -0.1293 0.0130
Kurtosis 6.0354 6.2713 7.4717 7.0317 7.4367
Jarque-Bera 1436.7** 1678.4** 3194** 2544.1** 3068.4**

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Correlation matrix
S&P 500 FTSE 100 DAX 30 SMI CAC 40

S&P 500 1.0000 0.5869 0.5567 0.4720 0.5766
FTSE 100 1.0000 0.6575 0.6294 0.6875
DAX 30 1.0000 0.7214 0.7588
SMI 1.0000 0.6890
CAC 40 1.0000

Table 4: Empirical results, CFIML Estimation
FTSE 100 vs S&P 500

c 0.95 2.69
β 0.4198 0.1761
n 530 43
π 0.1419 0.0115
W 26.64 11.42

[0.0001] [0.0436]
logL -9935.93

DAX 30 vs S&P 500
c 3.06 2.44
β 0.5823 0.5035
n 89 69
π 0.0238 0.0185
W 2.83 27.86

[0.7269] [0.0000]
logL -10137.40

SMI vs S&P 500
c 3.15 2.69
β 0.5731 0.7403
n 26 43
π 0.0070 0.0115
W 4.50 16.27

[0.4799] [0.0061]
logL -10250.70

CAC 40 vs S&P 500
c 2.20 2.69
β 0.6438 0.3412
n 164 43
π 0.0439 0.0115
W 14.27 12.27

[0.0140] [0.0312]
logL -9955.72

Notes: β denotes the contagion coefficient; c the threshold parameter; n the number of crisis periods and π the
probability of crisis; W is the Wald statistic for identification of the model.



Table 5: Test for Contagion
FTSE 100 vs S&P 500

LR statistic 1.5318
p-value 0.1910

DAX 30 vs S&P 500
LR statistic 1.8115
p-value 0.1230

SMI vs S&P 500
LR statistic 1.706
p-value 0.2200

CAC 40 vs S&P 500
LR statistic 1.9062
p-value 0.1180
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