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Abstract

This paper contributes to the literature on credence goods and analyzes

a procurement problem in which two specialized agents compete for being

hired to carry out a task. Two different approaches are eligible, but one of

them is superior for the particular task at hand and therefore yields a higher

payoff to the principal. Each firm is capable of one approach. Both firms are

better informed than the principal about the superior approach and about

their costs. I argue that information rents, which may potentially be earned

due to cost uncertainty, induce the firms to defraud the contractor with re-

spect to the superior approach. The contractor can mitigate the incentive

problem by offering contracts to the firms that condition the payment and

employment decision on both firm’s recommendations. I find that rents are

only paid if both firms consistently suggest the same approach. If the incre-

mental value of the proper approach is small enough, firms’ information on

the optimal approach becomes worthless and the optimal contract yields the

standard auction outcome. On the other hand, if the right approach is crucial,

the principal optimally assigns the task only to firms that are likely to offer

the appropriate approach even though this entails to pay high rents even to

firms which are not hired finally.
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1 Introduction

Ongoing specialization and its positive effects on productivity is one of the main

reasons of today’s prosperity. But increasing specialization also means that the va-

riety of special products and services becomes larger and which makes it more and

more difficult for a customer to figure out which fits his needs best. In contrast,

specialized suppliers have a lot of expertise about their own and their direct com-

petitors’ goods and therefore could support the customer to make the right choice.

But the opportunity to earn rents by selling his own good, no matter if it is the one

which suits the consumer best, may induce the seller not to advice truthfully.

Consider a house owner who seeks to install either a gas, oil, wood or elec-

tricity heating. Although each type of heating serves the same purpose, each one

has specific merits and drawbacks. For example, electricity heatings are cheap to

install but cause high electricity costs, while oil is presently cheaper but requires

expensive ovens. Hence in terms of overall costs, electricity may be best suited for

well isolated buildings while this might not be true for ancient buildings with high

energy wastage. As the technical components differ a lot of specialized firms offer

only one type of heating and presumably know for which buildings their heating is

especially suited. On the other side, a house owner typically does not know which

characteristics of his house speak in favor of one or the other type of heating and

thus needs to rely on the sellers’ advice.

As another example, management consultancies have specialized in various ap-

proaches to make their clients more profitable: For instance, the consultancy The

Boston Consulting Group enjoys a very good reputation for supporting their clients

in opening up new markets to increase revenues. On the other hand, McKinsey

is well known for their expertise in cutting down their clients’ costs. A potential

customer typically observes that profits decline and something should be done, but

usually the consultancies have a better understanding if that customer should focus

on bringing revenues up or costs down. Other things equal, the potential customer

is interested in the consultancies knowledge of the right approach in order to deter-

mine which one to employ optimally.

In both examples the sellers are better informed about the customer’s needs

than he himself. This corresponds exactly to Darby and Karni’s (1973) definition

of credence goods. Credence goods comprise a large group of goods and services,

like repairs, medical treatments, taxi rides etc. and enjoy increasing interest in

the economic literature.1 Formally, at the time of purchase the customer is less

informed about the utility some credence good provides than the seller.

I do not allow contracts to depend on the utility a credence good provides finally

to the customer, which would allow to easily solve the seller’s incentive problem.

This assumption is plausible as there are often unobservable stochastic factors that

influence the usefulness of the purchased good. In the example above, it is hard to
1See e.g. Dulleck and Kerschbamer (2006) for a survey.
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distinguish if low heating costs result from the right choice of the heating type or

from warm weather or a parsimonious tenant. In addition Pesendorfer and Wolinsky

(2003) point out that the customer’s payoff may be hard to verify.

This paper proposes optimal contracts which mitigate the incentives of sellers not

to advice honestly. In my model, a principal has to decide which of two specialized

agents to employ to carry out a task. Each agent is specialized in a different

approach. The agents possess private information with regard to their own costs

and to the optimal approach. The principal offers contracts to the agents containing

conditional payments and employment probabilities. Private information about

costs allows agents to earn rents if they are employed. I show that the possibility

to earn rents induces each agent to pretend that her approach is best suited. Hence

without further payments, the principal could not learn which specialized agent to

employ optimally. The principal may find it optimal to pay further rents in order

to elicit the agents’ private information about the optimal approach. It may be

optimal to employ agents which do not offer the best suited approach in order to

save on rents.

2 Related Literature

There are two big strands of literature this paper builds upon. Firstly there is a

growing literature on credence goods which also analyzes situations where sellers

have better information about customers needs than the clients themselves.

Many authors, like Pitchik and Schotter (1987) or Wolinsky (1993), (1995) as-

sume that a customer either needs a cheap or a costly treatment and can only

observe if his problem is fixed but not how it was done.2 All problems which

require only a cheap treatment can also be fixed by the costly one. This setup

induces experts sometimes to recommend and to bill expensive treatments even

though they conduct cheap ones if they are sufficient. Similar to my paper, Em-

mons (1997), (2001) and Alger and Salanie (2004) suppose that the customer can

verify the treatment he gets and find that the scope for fraud is reduced significantly.

Pesendorfer and Wolinsky (2003) analyze a model in which, similarly to my setup,

there is exactly one proper treatment yielding an extra payoff to the customer, i.e.

no treatment always solves the problem. For a more detailed survey of inefficiencies

that arise in credence goods markets, see Dulleck and Kerschbamer (2006).

My paper differs from the cited articles on credence goods in two regards . I

assume that the customer does not know the sellers’ costs. The resulting opportu-

nity to earn rents gives the sellers additional incentives to cheat on customers. The

more important difference is that instead of analyzing how competition affects the

sellers’ incentives to defraud, I allow the customer to offer contracts which counter-
2See also Dulleck and Kerschbamer (2006) for a further discussion of the Verifiability assump-

tion.
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act adverse incentives of the sellers. In my model, there are exactly two specialists

which compete against each other. This setup corresponds to problems which occur

only rarely and hence only a very limited number of firms has the prerequisites to

be able to solve it.

The methods employed to derive the optimal contracts draw on a second strand

of literature. In my model sellers have two-dimensional private information (on costs

and the superior treatment) which requires methods developed in the literature on

multidimensional screening (e.g. Rochet and Stole (2003)) and multidimensional

auctions (Armstrong 2000). To derive optimal contracts I solve similar to Armstrong

(2000) a relaxed model without some of the incentive constraints first and then verify

ex post that they are satisfied. In contrast to Armstrong (2000) the experts in my

model have correlated information.

This paper is organized as follows: In the next section, I introduce the formal

model and then present the solution technique in section 4. I suppose in section 5

as benchmark that the contractor knows the firms’ signals of fit and derive the

optimal contract. Afterwards, I turn again to the base model and define a relaxed

problem by ignoring incentive constraints that are likely to be satisfied. After

having characterized solutions of the relaxed case in section 6, I derive under which

conditions these solutions carry over to the fully fletched model in section 7. I

also derive solutions when incentive constraints that were ignored in the relaxed

case bind. The main results are stated under the simplifying assumption that the

surplus of the project is high enough so that the contractor finds it always optimal

to assign the project to some firm. This assumption facilitates to introduce the

method of solving the model and to convey the intuition of the results. Part A of

the appendix contains a general analysis and shows that all results carry over if the

project generates less surplus.

3 The model

A risk neutral contractor (or principal) needs to carry out a task and thereby would

earn the payoff S. There are two risk neutral firms (or sellers) which are able to

carry it out but each firm is specialized on a different approach for the task at hand.

I assume that always one of both approaches is superior for the contractor’s task

and would increase the contractor’s payoff by η ∈ R+ if chosen. Which approach

is superior is modeled by a fit variable Fi ∈ {0, 1} which takes on the value of 1

if firm i offers the superior approach and 0 otherwise. As exactly one firm offers

the superior approach, we always have f1 + f2 = 1.3 The contractor does not know

which approach is superior.

Both firms possess two-dimensional private information: Each firm knows the

costs to carry out its approach, which are either low (cl) or high (ch) with probability

3I use capital letters for random variables and lower case ones for realizations

4



β and 1−β respectively. The difference between high and low costs is δ. Each seller

does not know the other firm’s cost and both cost realizations are independent.4

To save on notation, define the net value as Vi := S − Ci. I denote the net value

of a firm as high (low) costs as L (H). As the difference between low or high net

value comes from the difference in costs, we still have H − L = δ. Apart from

cost information, every firm receives a noisy signal Xi ∈ {0, 1} that indicates if its

approach is superior for the contractor’s task. The probability that a firm receives

a correct signal is independent of the corresponding fit variable:

Pr(Xi = fi|fi) = 0.5 + 0.5γ γ ∈ (0, 1]

γ measures the quality of the signal. (In case of γ → 0 firms receive white noise;

γ of 1 captures complete information). Note that the realizations of the signals

are negatively correlated as γ > 0 and that the realizations of the fit-signals are

independent of the realizations of the costs. I define both firms’ signals to be

consistent if exactly one firm has the signal of having a superior approach, i.e. they

correspond to a true fit vector that occurs with positive probability.

Definition 1. The signals (x1, x2) are consistent if x1 + x2 = 1

In summary, a firm’s type θi consists of its value and its fit signal: Θi = Vi×Xi.

Note that due to the correlated information structure, firms are likely to have consis-

tent signals. Straight forward computation yields the following ex-ante probabilities

αθ1,θ2 of the firms being of type θ1 and θ2:5

αθ1,θ2 =

{
1
4 Pr(v1) Pr(v2)

(
1 + γ2

)
if signals are consistent

1
4 Pr(v1) Pr(v2)

(
1− γ2

)
if signals are inconsistent

(1)

Before employing the firms, the contractor can induce them to reveal their pri-

vate information. Contingent on the acquired information, the contractor can com-

mit to a (certain) payment mi : Θi×Θj → R and an probability qi : Θi×Θj → [0, 1]

to employ firm i and not firm j 6= i.67 I assume that the contractor can make pay-

ments and the employment probability for firm i contingent on information from

firm 1 and firm 2. The contractor can in principle even reward a firm although

he eventually employs the other one. I denote the stage where firms have possibly

revealed their private information but before payments are made and the task is

carried out as the ex-interim stage.

Another important assumption is that once firms have (truthfully) revealed their

information, each of them can back out and then neither receives a payment nor
4Although the independence assumption is mainly made for simplicity, it can be justified if the

costs reflect opportunity costs determined by capacity constraints which randomly bind or not.
5Pr(Vi) denotes the probability that Vi = vi.
6Note that the first argument of both the employment probability and the payment is the type

of the firm to which it accrues. The second argument is the type of the other firm.
7As the firms are risk neutral, it does not matter if the contract specifies a payment conditional

on a firm carrying out the task or if it specifies an unconditional payment.
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has to solve the customer’s problem, which gives them a payoff normalized to zero.

Hence to prevent agents from backing out, the expected payoffs must be nonnega-

tive. Technically, the payment/employment scheme must be ex-interim individually

rational.8 An equivalent assumption would be that both firms have limited liability

and cannot have ex-interim payoffs below zero. The contractor cannot make pay-

ments conditional on the bonus he receives from choosing the superior approach.

I denote by ri the ex-interim payoff (or rent) of firm i before the task is carried

out but after both firms have had the opportunity to pass on their information to

the contractor. It consists of the monetary compensation that the firm receives

from the contractor minus the probability weighted costs of solving the customer’s

problem. Note that I allow rents to be paid to a firm although its employment

probability is zero.

ri(θ1, θ2) = mi(θ1, θ2)− qi(θ1, θ2)ci

The contractor’s ex-interim payoff Uc is the sum of the probability weighted payoff

from the project minus the payments to the firms:

Uc(θ1, θ2) = q1(θ1, θ2) (S + Pr(F1 = 1|x1, x2)η)

+ q2(θ1, θ2) (S + Pr(F2 = 1|x1, x2)η)−m1(θ1, θ2)−m2(θ1, θ2)

I define the gross value πi(θ1, θ2) ≡ vi + Pr(Fi = 1|x1, x2)η to comprise the net

value plus the expected payoff for the right fit given the signals of both firms. Instead

of employment probabilities and payments, a contract can equivalently consist of

each firm’s employment probability and rent ri : Θi ×Θj → R+ contingent on the

announced type of both firms. The contractor’s expected payoff is then:

Uc(θ1, θ2) = q1(θ1, θ2)π1(θ1, θ2) + q2(θ1, θ2)π2(θ1, θ2)

− r1(θ1, θ2)− r2(θ1, θ2)
(2)

The objective of the contractor is to find a scheme of payments and employment

probabilities that maximizes the contractor’s ex-ante expected payoff.

4 Optimal contracting schemes

I restrict attention to contracting schemes that are anonymous and truthfully imple-

mentable in Bayesian Nash equilibrium (BNE). The revelation principle for Bayesian

Nash implementation ensures that it is impossible to implement schemes in BNE

which yield a higher expected payoff than truthfully implementable ones. With

respect to this model a scheme is anonymous if payments and employment proba-

bilities are independent of the index of an agent.

Definition 2. A scheme is anonymous if it satisfies q1(θ̂, θ̃) = q2(θ̂, θ̃) = q(θ̂, θ̃)

and m1(θ̂, θ̃) = m2(θ̂, θ̃) = m(θ̂, θ̃) ∀θ̂, θ̃ ∈ Θi.
8Note that this assumption rules out the application of the mechanism suggested by Cremer

and McLean (1988), which would render the firms’ private information concerning the fit worthless.
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The restriction to anonymous schemes simplifies the analysis considerably. It

seems reasonable for the contractor to offer both firms the same scheme because

the assumption of a symmetric prior means that ex-ante both firms seem equally

well suited to perform the task.

An optimal contracting scheme maximizes the contractor’s expected payoff (2)

subject to the resource, incentive and participation constraints, which are described

below.

The resource constraints capture the assumption that after the firms have re-

vealed their private information the task can be contracted at most once:

q(θ1, θ2) + q(θ2, θ1) ≤ 1 ∀θ1, θ2 ∈ Θi (3)

If both firm announce to be of the same type, then the restriction to anonymous

schemes implies that both firms are employed with equal probability.

q(θ̂, θ̂) ≤ 0.5 ∀θ̂ ∈ Θi (4)

The incentive constraints ensure that truth telling is optimal for each firm, given

that the other firm acts truthfully. This requires:

E
[
ri(θi, θ̃j)|θi

]
≥ E

[
ri(θ̂i, θ̃j) + (vi − v̂i)qi(θ̂i, θ̃j)|θi

]
∀θ̂i ∈ Θi (5)

Condition (5) states that once each firm knows its own type, telling the truth must

be weakly preferred to lying for any type it may have. Multiplying (5) by the

probability that a firm has a given type, these conditions can also be expressed in

terms of ex ante probabilities αθ1,θ2 :

∑
(θi,θj)∈Θ

αθi,θjri(θi, θj) ≥
∑

(θi,θj)∈Θ

αθi,θj [ri(θ̂i, θj) + (vi − v̂i)qi(θ̂i, θj)] ∀θ̂i ∈ Θi

(6)

As the type space of a firm contains four elements, there are three incentive con-

straints for every type and hence 12 incentive constraints in total. Figure 1 il-

lustrates the incentive constraints.9 I denote incentive constraints that prevent

high (low) net value firms from pretending to have low (high) value as downward

(upward) incentive constraints and those that prevent firms from lying only with

respect to the fit-signal as horizontal incentive constraints. I address a single in-

centive constraint that prevents a firm of type θi from announcing being type θ̂i as

incentive constraint (θi → θ̂i).

The ex-interim participation constraints ensure that after all firms have revealed

their type and hence a payment and employment probability is assigned to each firm,

every firm weakly prefers to accept the offer than to back out:

Ui(θi, θj) = ri(θi, θj) ≥ 0, ∀(θi, θj) ∈ Θi ×Θi (7)
9Each dashed arrow represents a constraint that must be satisfied.
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Figure 1: Incentive constraints
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Figure 2: Benchmark incentive constraints

If all ex-interim participation constraints hold, then firms are willing to accept

the contract also before they know their own type. The reason is that whatever

their type will be, the ex-interim participation constraints ensure they will be better

off than with their outside option.

5 The benchmark case

To isolate the effect of the firms’ private information on the optimal approach, I use

the case where the contractor observes the fit-signal of both firms as a benchmark.10

I maintain the assumption that each firm does not observe its rival’s type. Note that

all players still have incomplete information regarding the fit. Under these modified

assumptions, the contractor does not have to induce the firms to reveal their signal

of fit truthfully. Hence he only needs to ensure that both firms truthfully announce

their net value. Figure 2 depicts the remaining incentive constraints, where dotted

lines represent constraints that are slack. Technically, the benchmark assumptions

guarantee that there remains only one dimension of uncertainty in the model. Thus,

the following incentive constraints have to hold:

E
[
ri((H,xi), θ̃)|θi

]
≥ E

[
ri((L, xi), θ̃) + δqi((L, xi), θ̃j)|θi

]
(8)

E
[
ri((L, xi), θ̃)|θi

]
≥ E

[
ri((H,xi), θ̃)− δqi((H,xi), θ̃j)|θi

]
(9)

Before analyzing the properties of optimal schemes of the benchmark case, define

R(θi) ≡ E[ri(θi, θ̃j)|θi].11 Because the asymmetric information has been reduced to

a single dimension, the benchmark scheme can be derived with standard techniques.
10To keep the benchmark case similar to the full blown model, I assume that the contractor

learns the firms’ signal after they have revealed their net value.
11Note that in contrast to the original problem, there is no need to define rents r(θi, θj) that

depend on both firms’ type. The reason is that the firms do not have to be prevented from lying

with respect to their fit signal in the benchmark case.
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The simplifying assumption 1 ensures that the surplus of the project is high

enough so that one firm is always hired regardless of the combination of firms’ types.

Technically, I assume that the value is high enough for all resource constraints to

hold with equality. Lemma 1 characterizes generic solutions of the optimal bench-

mark schemes.

Assumption 1. The net value L is satisfies L ≥ δβ
1−β −

η
2 . In addition, picking the

right approach yields strictly positive extra payoff η > 0.

Lemma 1. Generically, any optimal scheme of the benchmark case is characterized

as follows:

i) No rents are paid to firms with a low net value.

ii) Constraint (8) binds for firms with good or bad signal of fit and

R(H,xi) = δE[qi((L, xi), θ̃j)|xi].

iii) If both firms provide the same net value, the firm with lower probability of fit is

never employed: q((ṽi, 0), (ṽi, 1)) = 0 ṽi ∈ L,H.

iv) If both firms announce to be the same type then they are employed with proba-

bility 0.5: q((θ̃i), (θ̃i) = 0.5

v) If η > δ(1+γ2)
2γ(1−β) then q(L1,H0) = 1, q(H0, L1) = 0 and otherwise q(L1,H0) = 0,

q(H0, L1) = 1.

Proof. See appendix.

The results with respect to the firms’ private information of net value parallels

the well known results of one-dimensional adverse selection: High value firms have

to be paid rents that they could earn in expectation by pretending to have low net

value. Part ii) of Lemma 1 states that the expected rents a firm with high value

and signal xi receives is proportional to the probability that a firm with the same

signal but low net value would be employed. Define the virtual profits ψ(θi, θj) as

the gross profits adjusted for the induced expected rent payments as follows:

ψ(θi, θj) =

 π(θi, θj) if xi = H

π(θi, θj)− δ
α(H,xi),θj

αθi,θj
if xi = L

Effectively, the contractor offers contracts that maximize the sum of expected virtual

profits. As the virtual profits of employing low value firms are lower than the gross

profits, for a large set of parameters the contractor employs low net value firms less

often than would be socially efficient. Also consistent with standard theory, there

arises no allocative distortion at the top for H1 firms.12

Parts (iii) to (v) Lemma 1 establish that the contractor assigns the project

efficiently with respect to the signal of fit dimension. By part iii), if two firms offer

the same net value the contractor never employs firms that have a low probability
12However, if π(L1, H0) > π(H0, L1) > 0 and ψ(L1, H0) < ψ(H0, L1), then H0 firms are

employed to often compared to the first best.
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of fit. This property arises because the contractor does not have to pay rents to

acquire information regarding fit.

Note that the contractor finds it optimal in the benchmark case to employ low

net value firms with a good fit strictly more often than those with a bad signal

of fit. This directly translates into higher rents that have to be paid to H1 firms

compared to H0 firms. As lying with respect to the signal is free of costs for the

firms, the contractor cannot maintain this wedge of rents if firms have to be induced

to announce truthfully their signal of fit. This creates additional distortions which

are examined in the next section.

6 The relaxed problem

Following the standard approach, I first solve a relaxed version of the problem,

which involves only a subset of the incentive constraints and check afterwards if

the remaining constraints are satisfied. Specifically, I neglect upward constraints,

i.e. constraints that prevent low net value firms to pretend being high value ones.

Besides I will ignore horizontal constraints of high net value firms at first and then

show that they are always satisfied for optimal contracts.13 Figure 3 shows the

downward constraints that may or may not bind in the relaxed case.

H1

���
�
�
�

��?
?

?
?

?
H0

���
�
�
�

���
�

�
�

�

L1 L0

Figure 3: Relaxed case incentive constraints

The main difference compared to the benchmark case is that in the relaxed case,

high net value firms may be induced to misreport their type in various directions. A

firm can either lie with respect to costs or with respect to the signal or with respect

to both dimensions.

To prompt a firm of type θi to reveal its type truthfully, its expected rents for

telling the truth must weakly exceed the maximum of expected rents it would gain

by deviating in any direction as captured in condition (10). This implies directly

that for any fixed allocation q(·) the expected rents are weakly higher than in the

benchmark case.

∑
θj∈Θj

αθi,θjri(θi, θj) ≥ max
θj∈Θj

 ∑
θj∈Θj

αθi,θj [ri(θ̂i, θj) + (vi − v̂i)qi(θ̂i, θj)]


(10)

13Note that some of these constraints may hold with equality for optimal contracts, however,

relaxing them would not change the optimal allocation.
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More specifically, in the benchmark case low net value firms with a bad signal of

fit are never employed if the other firm has reported a good fit. Under assumption 1

this means that low net value firms with good signal are more often employed than

those with a bad one. Hence in any scheme of the benchmark case an H0 firm

would gain strictly higher rents by pretending to be of type L1 than to be of type

L0. This means that the contractor would have to pay strictly higher rents to a

high value firm with bad fit signal in order to implement the optimal allocation of

the benchmark case. In order to economize on rent-payments, the contractor may

prefer to distort the allocation and to employ low net value firms with good fit less

often then in the benchmark case. The analysis will show, that depending on the

parameters, there may arise allocations such that all four constraints of figure 3

bind.

The following Lemma establishes that all rents for low types are zero. As there

are no upward constraints considered in the relaxed problem there is no need to

deter low value firms from mimicking high value ones. While there are no positive

effects, paying rents to low value firms requires also higher rents to be paid to high

value firms.

Lemma 2. In any optimal scheme, r((L, xi), θj) = 0 ∀xi ∈ 0, 1, θj ∈ Θi.

Proof. Suppose to the contrary that there exists a solution with r((L, xi), θj) >

0. Set r((L, xi), θj) = 0 ∀xi ∈ {0, 1}, θj ∈ Θi. Then all downward incentive

constraints are still satisfied, horizontal incentive constraints for high value firms

are unaffected and horizontal incentive constraints for low value firms are satisfied

as all such firms earn zero rents. Since Uc increases by the change, this contradicts

optimality.

Lemma 3 suggests the most effective rent scheme to prevent firms from lying

with respect to the signal of fit dimension. This is done by paying rents only if both

firms report consistent fit signals. Intuitively, if a firm lies while the other reports

truthfully, then due to the correlated signals chances are high that the reported

signals are inconsistent. By paying no rents in this case, firms have little incentives

to lie as this leads to zero rents with high probability.

Lemma 3. There always exists an optimal scheme that involves

r((vi, xi), (vj , xj)) = 0 if xi + xj 6= 1.

Proof. See appendix.

Building on Lemma 3, I concentrate on schemes that involve paying no rents if

the announced signals are inconsistent. As each firm’s net value is independent from

both the fit signals and the other firm’s net value, I can further restrict attention

to schemes that only pay rents if both firms provide high net value.14 Thus in the
14Technically, due to risk neutrality, a sufficient statistic for the payoff of a firm

with respect to the rent payments r(·) is the expected rent paid for consistent reports:

α(H,xi),(L,xj)r((H,xi), (L, xj)) + α(H,xi),(H,xj)r((H,xi), (H,xj)) xi ∈ 0, 1, xj = 1 − xi.
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following, rents are only paid if the firms announce (H0,H1) or (H1,H0). Now the

simplified relaxed problem looks as follows:

max
r,q

Eθ[Uc]− αH1,H0r(H1,H0)− αH0,H1r(H0,H1) (11)

such that the following incentive constraints and the resource constraints (3) are

satisfied.∑
θj∈Θj

(
δαH1,θjq(L1, θj)

)
− αH1,H0r(H1,H0) ≤ 0 (12)

∑
θj∈Θj

(
δαH1,θj

q(L0, θj)
)
− αH1,H0r(H1,H0) ≤ 0 (13)

∑
θj∈Θj

(
δαH0,θj

q(L1, θj)
)
− αH0,H1r(H0,H1) ≤ 0 (14)

∑
θj∈Θj

(
δαH0,θj

q(L0, θj)
)
− αH0,H1r(H0,H1) ≤ 0 (15)

αH0,H0r(H1,H0)− αH0,H1r(H0,H1) ≤ 0 (16)

αH1,H1r(H0,H1)− αH1,H0r(H1,H0) ≤ 0 (17)

The following Lemma establishes that in any optimal scheme it is weakly more

attractive for high value firms to pretend being type L1:

Lemma 4. In any optimal scheme, the incentive constraints (H1 → L1) and

(H0 → L1) hold with equality.

Proof. See appendix.

Intuitively, Lemma 4 uses the fact that given the other firm’s signal, the gross

profit π from employing a firm with good fit signal is higher than with bad signal

of fit. The incentive constraints of Lemma 4 could only be slack if the contractor

often employed low net value firms without fit and thus had to pay high rents to

prevent high net value firms from lying. But in this case, it would be profitable to

employ also low net value firms with fit because little additional rents would have

to be incurred until both constraints (12) and (14) bind again. Lemma 4 implies

that in any optimal solution it is weakly more attractive for both the H1 and the

H0 firm to pretend being type L1 instead of being type L0. Hence in any optimal

scheme, the rents can be computed as follows:

αH1,H0r(H1,H0) =
∑

θj∈Θj

δαH1,θjq(L1, θj) (18)

αH0,H1r(H0,H1) =
∑

θj∈Θj

δαH0,θj
q(L1, θj) (19)

Equations (18) and (19) directly indicate the classical result that given any

allocation, the rents depend linearly on the level of uncertainty δ with respect to

the net value. Hence, if there is no uncertainty concerning the costs of the project,

12



then no firm is able to extract any rents and the private information concerning the

fit becomes worthless.

While so far all results of this section are valid for general parameters, proposi-

tion 1 restricts attention to the case where the surplus of the project is sufficiently

high for the project to be always carried out regardless of the firms’ type. Again,

the qualitative results of this proposition fully carry over to general parameters.

Assumption 2 guarantees that the virtual profits are positive for any possible com-

bination of types. Note that in the relaxed problem, the contractor has to pay

weakly higher rents than in the benchmark case and therefore assumption 2 re-

quires higher surplus of the projects than assumption 1.

Assumption 2. The net value L satisfies L ≥ 2βδ
(1−β)(1−γ2) −

η(1−γ)2

2(1−β) Picking the

right approach yields strictly positive extra payoff η > 0.

Proposition 1. Suppose assumption 2 holds. Then projects are optimally assigned

in the relaxed problem as follows:

i) If both firms have identical type, then they are employed with probability 1
2 :

q(H1,H1) = q(H0,H0) = q(L1, L1) = q(L0, L0) = 1
2 .

ii) If both firms receive the same signal of fit but differ in net value, then the

firm with the higher net value is employed: q(H1, L1) = q(H0, L0) = 1 and

q(L1,H1) = q(L0,H0) = 0.

iii) The contractor always employs high value firms which are more likely to offer the

right approach: q(H1,H0) = q(H1, L0) = 1 and q(H0,H1) = q(L0,H1) = 0.

iv) If η ≤ δβ
(1−β)γ then q(H0, L1) = 1, q(L1,H0) = 0, q(L1, L0) = q(L0, L1) = 0.5.

v) If δ
2

[
1+β

γ(1−β) + γ
]
≥ η > δβ

(1−β)γ then q(H0, L1) = q(L1, L0) = 1 and

q(L1,H0) = q(L0, L1) = 0.

vi) If η > δ
2

[
1+β

γ(1−β) + γ
]

then q(L1,H0) = q(L1, L0) = 1 and q(H0, L1) =

q(L0, L1) = 0.

Proof of Proposition 1. The proof of this and the following propositions are mainly

based on the duality theorem.15 Note that by the dual conditions associated with

r(H1,H0) and r(H0,H1), the dual variables of the incentive constraints must

satisfy: λ(H,xi)→(L,yi) ≤ 1 ∀xi, yi ∈ {0, 1}.
Part i)

Assumption 2 assures that α(L,xi),(L,yi)π((L, xi), (L, yi))− δαH1,xi
− δαH0,(L,xi) ≥

0 ∀xi, yi ∈ {0, 1} which implies that employment probabilities for all

type-combinations add up to one. In particular the dual constraints

α(L,xi),(L,xi)π((L, xi), (L, xi)) − δλH1→(L,xi)αH1,(L,xi) − δλH0→(L,xi)αH0,(L,xi) ≥
0 ∀xi ∈ {0, 1} are satisfied. This implies that the dual constraints for high value

firms with equal type are also satisfied.

Part ii)

15see e.g. Luenberger (1989)
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The dual conditions of part i) hold, imply that the dual con-

straints α(H,xi),(L,xi)π((H,xi), (L, xi)) ≥ α(L,xi),(H,xi)π((L, xi), (H,xi)) −
δλH1→(L,xi)αH1,(H,xi) − δλH0→(H,xi)αH0,(H,xi) ∀xi ∈ {0, 1} are also satis-

fied.

Part iii)

αH1,θj
π(H1, (L, θj)) ≥ αθj ,H1ψ(θj ,H1) ∀θj ∈ L0,H0 as π(θ) ≥ ψ(θ) and

π(H1, L0) > 0 by assumption 2.

Part iv)

Note that the allocation assures together with (19) and (18) that all four incentive

constraints (12)-(15) hold with equality and hence their dual variables may be

nonzero. Choose λH1→L1 = αL1,L0[π(L1,L0)−π(L1,L0)]
δ[αH1,L0+αH0,L0]

, λH1→L0 = 1 − λH1→L1,

λH0→L0 = 0 and λH0→L1 = 1. The hypothesis η ≤ δβ
(1−β)γ is equivalent to

αL1,L0[π(L1, L0) − π(L0, L1)] ≤ δαH1,L0 + δαH0,L0 and hence λH1→L1 ≤ 1.

π(L1, L0) > π(L0, L1) always holds and thus λH1→L1 > 0. The dual variables

are constructed such that the dual condition αL1,L0π(L1, L0)− δλH1→L1αH1,L0 −
δλH0→L1αH0,L0 = αL1,L0π(L0, L1) − δλH1→L0αH1,L1 − δλH0→L1αH1,L0 is always

satisfied. As π(H0, L1) = π(L0, L1) + δ, this implies that the dual condition for

q(H0, L1) = 1 is also satisfied.

Part v)

As the allocation only involves the constraints (H1 → L1) and (H0 → L1)

binding, λH1→L1 = λH0→L1 = 1. The hypothesis η > δβ
(1−β)γ is equivalent to

αL1,L0[π(L1, L0) − π(L0, L1)] > δαH1,L0 + δαH0,L0 and hence the dual condition

for q(L1, L0) = 1 is satisfied. The second part of the hypothesis is equivalent to

αL1,H0[π(L1,H0)− π(H0, L1)] ≤ δαH1,H0 + δαH0,H0 and hence the dual condition

for q(H0, L1) = 1 is satisfied.

Part vi)

The hypothesis is equivalent to αL1,H0[π(L1,H0)−π(H0, L1)] > δαH1,H0+δαH0,H0

and hence the dual condition for q(L1,H0) = 1 is satisfied. This implies that the

dual condition for q(L1, L0) = 1 must also hold.

Proposition 1, Part i) states that whenever both firms report the same net value

and the same signal of fit, each firm is charged with the project with 50% probability.

This result is driven by assumption 2 which restricts the project to be profitable

enough.

There is no downward distortion at the top as established in Part ii) and iii)

of Proposition 1. Intuitively, in the relaxed problem the contractor does not have

to incur costs to prevent low value firms from mimicking high value ones. Hence

if a high value firm yields a higher gross profit than employing the second firm, it

should be optimally employed.

There are two broad classes of solutions. If picking the right approach does not

yield high additional value, then Proposition 1, Part iv) applies. In this case the

contractor optimally commits not to take the private information with respect to
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the signal of fit into account. The reason is that the rents paid to a firm equal the

maximum of rents it would obtain by not revealing its type truthfully. Thus the

contractor can economize on rents if he commits to employ low value firms with

equal probability which renders high value firms indifferent between pretending

to have low value with or without fit. Formally, this class of solution involves

(H1 → L0) and (H0 → L0) holding with equality as shown in figure 4.16 This

allocation equals those of a classical second prize auction with two bidders and

independent private net value vi ∈ {L,H}.17

H1
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??
??
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�

L1 L0

Figure 4: Binding Incentive constraints if fit is less important

H1
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H0
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��

��
��

�

L1 L0

Figure 5: Binding/Slack incentive constraints if fit is important

The second class arises if the fit is important enough as characterized in Part v)

and vi) of the proposition. Then it is optimal for the contractor to employ mostly

firms that are likely to offer the right approach. In particular this means that low

net value firms that report a good fit are more often employed than those with bad

fit. This implies that high net value firms may reap higher rents by pretending to

be type L1 rather than L0. Formally, this class of solution involves (13) and (15)

to be slack as shown in figure 5. As a consequence, employing a L1 firm is very

expensive at the margin, as this causes further rents to be paid to both H1 and H0

firms. If the right approach is extremely important as in part iii), the contractor

may even prefer to employ low value firms with high fitting probability instead of

employing high value firms without fit. For intermediate values of the bonus as

described in part iv), it may be optimal to employ high value firms with bad fit

in order to save on rents and gain net value. But in this case, L1 firms are still

employed often enough so that the incentive constraints (13) and (15) are slack.

Taken together, the contractor puts less weight on the firm’s announcement of

its signal of fit when assigning its employment probability. If the bonus of the right

approach is low enough, the probability that a firm is employed depends besides the
16Solid arrows indicate binding constraints, pointed arrows slack ones.
17In this class of solution, rents could be also paid as in a second price auction.
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net values of the firms only on the fit announcement of the other firm. Intuitively, if

the employment probability of firm i (positively) depends on its own announcement,

then higher rents have to be paid to prevent firms with no fit from lying. On the

other hand, using firm j’s announcement to determine the employment probability

of firm i does not induce adverse incentives for firm i and is thus cheaper information.

This important conclusion is summarized by Corollary 1:

Corollary 1. Suppose assumption 2 holds. Then employment probabilities of firms

that announce a good(bad) fit signal are weakly lower(higher) in the proposed optimal

scheme of the relaxed problem compared to the optimal scheme of the benchmark

case.

Proof. The employment schemes of the benchmark case and the relaxed prob-

lem possibly differ with respect to q(L1,H0), q(H0, L1), q(L1, L0), q(L0, L1).

For η ∈
[

δ(1+γ2)
2γ(1−β) ,

δ[(1+γ2)+β(1−γ2)]
2γ(1−β)

)
, in the benchmark case q(L1,H0) = 1,

q(H0, L1) = 0 while in the relaxed problem q(L1,H0) = 0, q(H0, L1) = 1. They

are equal otherwise.

In the benchmark case, irrespective of the parameters q(L1, L0) = 1, q(L0, L1) = 0

while in the relaxed problem for η ≤ δβ
(1−β)γ , q(L1, L0) = q(L0, L1) = 0.5

7 The full problem

Solutions of the relaxed problem may also be solutions of the full problem, if they

satisfy the incentive constraints that were ignored in the relaxed problem. The

following inequality constraints (20)-(23) describe in this order the upward incentive

constraints (L1 → H1), (L0 → H1), (L1 → H0), (L0 → H0):

αL1,H0 [r(H1,H0)− r(L1,H0)]−
∑

θj∈Θj

(
δαL1,θj

q(H1, θj)
)
≤ 0 (20)

αL0,H0 [r(H1,H0)− r(L0,H0)]−
∑

θj∈Θj

(
δαL0,θj

q(H1, θj)
)
≤ 0 (21)

αL1,H1 [r(H0,H1)− r(L1,H0)]−
∑

θj∈Θj

(
δαL1,θj

q(H0, θj)
)
≤ 0 (22)

αL0,H1 [r(H0,H1)− r(L0,H1)]−
∑

θj∈Θj

(
δαL0,θjq(H0, θj)

)
≤ 0 (23)

Lemma 5 establishes that whenever an optimal solution of the relaxed problem

satisfies the incentive constraint (23), it also satisfies all other constraints of the full

problem.

Lemma 5. Any optimal solution of the relaxed problem that satisfies the incentive

constraint (L0 → H0) is also an optimal solution of the full problem.

Proof. See Appendix
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Lemma 5 builds on the fact that any optimal solution of the relaxed problem

also satisfies the constraints (L1 → H1) and (L0 → H1). (L1 → H1) is satisfied

because given the other firm’s type and the signal of fit, firms that offer a high

net value are more often employed then those with a low net value. (L0 → H1)

is satisfied because (L0) firms pretending to have high net value and a good fit

will be rewarded the project very often and thus would have to incur high costs.

(L1 → H0) holds if (L0 → H0) is satisfied because (L1) firms pretending to have

high net value and a good fit will be paid rents only if the other firm reports a good

fit signal, and it is unlikely that both firms receive a good signal of fit.

By Lemma 5, the most critical incentive constraint is (L0 → H0). It may be

violated if the optimal solution of the relaxed case involves L1 firms to be employed

more often than H0 firms. Intuitively in this case high rents have to be paid to

H0 firms and their employment probability is low. Low employment probabilities

imply that low net value firms need not incur mimicking costs often. This makes it

attractive for L0 firms to pretend having high net value in order to reap the rents,

as low value firms would not earn rents otherwise.

Plugging equation (19) that determines r(H0,H1) in the incentive con-

straint (23) and using 1−β
β α(H,xi),θj

= α(L,xi),θj
yields condition (24).

αL0,L0 [q(L1, L0)− q(H0, L0)] + αL0,L1 [q(L1, L1)− q(H0, L1)]

+αL0,H0 [q(L1,H0)− q(H0,H0)] ≤ 0
(24)

Any optimal solution of the relaxed case that additionally satisfies this condition

also solves the fully constrained problem. Effectively, inequality (24) imposes an

upper bound on the difference between rents paid to low and high net value firms

respectively. Plugging the schemes proposed in section 6 into condition (24) yields

the following result:

Corollary 2. Suppose assumption 2 holds. The solution of the reduced problem

also solves the full problem if additionally η ≤ δ
2

[
1+β

γ(1−β) + γ
]
.

Proof. Verifying if the optimal allocations of Proposition 1 satisfy condition (24)

yields the result.

If solutions of the relaxed problem violate inequality (24), all incentive con-

straints described by (6) have to be taken into account when solving the model.

However, this occurs only if the bonus of the right approach is sufficiently high.

Then with low net value and a good signal of fit are relatively more employed than

firms with a high net value but a bad signal of fit. In this case, Lemma 6 sug-

gests that the solution of the full problem is governed by four binding incentive

constraints.

Lemma 6. If the parameters are such that the solution of the relaxed problem

violates the incentive condition (L0 → H0), then any solution of the full prob-
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lem involves the incentive constraints (H1 → L1), (H0 → L1), (L1 → L0) and

(L0 → H0) to bind.

Proof. Ignore for the moment all incentive conditions except those mentioned in

the Lemma. It is then shown in the appendix that they are satisfied if the following

four conditions hold with equality.

- Constraint (H1 → L1):

The proof parallels that of Lemma 4.

- Constraint (H0 → L1):

The proof parallels that of Lemma 4.

- Constraint (L0 → H0):

Suppose that the constraint does not bind. Then the solution of the problem

would equal that of the relaxed problem, which would violate this condition

by Lemma 5 which is a contradiction.

- Constraint (L1 → L0):

Suppose that it this condition did not bind. Then αL0,H1r(L0,H1) >

αL0,H0r(L1,H0) ≥ 0. Hence r(L0,H1) could be reduced by ε > 0 small

enough s.t. this condition is still satisfied. After this reduction the other

constraints would still hold. As a reduction in rents would imply an increase

of expected profits this contradicts optimality.

H1
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��
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L1 // L0
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Figure 6: Binding incentive constraints in full problem if fit is important

Interestingly, the binding incentive constraints (H0 → L1), (L1 → L0) and

(L0 → H0) which are addressed in Lemma 6 have a circular character, as shown

in figure 6. Intuitively, paying higher rents to an H0 agent to keep him from

mimicking being of type L1 also requires to pay higher rents to a firm with type L0.

This in turn makes it necessary to pay also higher rents to an L1 firm, which then

countervails the objective of making a H0 firm to reveal its type truthfully. This

circularity makes it extremely costly to induce truthful behavior by paying rents.

Hence, besides offering very high rents, the contractor may employ less frequently

L1 firms or more often H0 firms compared to the relaxed case. For any optimal

allocation, the following Lemma states the minimal rents. Of course, the rents equal

those computed by (18) and (19) if Corollary 2 applies.
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Lemma 7. In any optimal allocation of the full problem, the rents are computed as

follows:

r(L0, L1) = max

0,
δ(1 + γ2)
γ2αL0,H1

∑
θj∈Θj

αL0,θj
[q(L1, θj)− q(H0, θj)]

 (25)

r(L1,H0) =
1− γ2

1 + γ2
r(L0,H1) (26)

r(H1,H0) = α−1
H1,H0

∑
θj∈Θj

δαH1,θj
q(L1, θj) + r(L1,H0) (27)

r(H0,H1) = α−1
H0,H1

∑
θj∈Θj

δαH0,θj
q(L1, θj) +

1− γ2

1 + γ2
r(L1,H0) (28)

Proof. Imposing the constraints (H1 → L1), (H0 → L1), (L1 → L0) and

(L0 → H0) to hold with equality and solving the system yields the result.

Following Lemma 6 it is possible to ignore all constraints not mentioned in

the Lemma if picking the right approach is crucial. Hence all dual variables of

these conditions may be set to zero. The dual variable λX→Y reflects the imputed

expected rents which are paid in order to satisfy incentive constraint (X → Y ).

Define the virtual profits ψ(θi, θj) for extreme parameters as follows:

ψ(θi, thetaj) =


π(θi, θj) if θi ∈ {L0,H1}
π(θi, θj) + δ

αL0,θj

αθi,θj
λL0→H0 if θi = H0

π(θi, θj)− δ
αθi,θj

[
αH1,θj

+ αH0,θj
λH0→L1

]
if θi = L1

(29)

If the right approach is crucial, then employment probabilities of (H1) and (L0)

firms do not enter in any of the binding constraints. This means that no further

rents have to be borne for employing these firms and hence the virtual profit equals

the gross profit. The virtual profit of H0 firms is higher than the gross profit,

because employing them makes it less attractive for L1 firms to pretend being of

type H1. From equation (29) one sees that only firms of type L1 have a virtual

value which may be dramatically lower than in the benchmark case.

Similar to the relaxed case, all previous results of this section except Corollary 2

are valid for general parameters. For simplicity, Proposition 2 again restricts at-

tention to the case of sufficiently high surplus of the project such that for each

combination of types, some firm is charged with the project finally. Again, the

qualitative results of this proposition fully carry over to general parameters.

Assumption 3 guarantees that the virtual profits for any possible combination of

types are positive. As the full problem involves weakly higher rents than the relaxed

case, assumption 3 requires a higher surplus of the project than assumption 2.

Assumption 3. The net value L satisfies

L ≥ 1
2

[(
1 + 2βγ2 − γ2

) (
1 + γ2

)
δ

γ2(1− β) (1− γ2)
− η

]
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Picking the right approach yields strictly positive extra payoff η > 0.

Proposition 2. Suppose assumption 3 holds. Then projects are optimally assigned

in the full problem as follows:

i) If both firms have identical type, they are employed with probability 1
2 :

q(H1,H1) = q(H0,H0) = q(L1, L1) = q(L0, L0) = 1
2 .

ii) If both firms receive the same signal of fit but differ in net value, the firm with

higher net value is employed: q(H1, L1) = q(H0, L0) = 1 and q(L1,H1) =

q(L0,H0) = 0.

iii) The contractor always employs high value firms which are more likely to offer the

right approach: q(H1,H0) = q(H1, L0) = 1 and q(H0,H1) = q(L0,H1) = 0.

iv) If η ≤ δβ
(1−β)γ then q(H0, L1) = 1, q(L1,H0) = 0, q(L1, L0) = q(L0, L1) = 1

2 .

v) If δ
2

[
1+β

γ(1−β) + γ
]
≥ η > δβ

(1−β)γ then q(H0, L1) = q(L1, L0) = 1 and

q(L1,H0) = q(L0, L1) = 0.

vi) If δ(1+γ2)2

4γ3(1−β) −
δβ(1+γ2)

2γ ≥ η > δ
2

[
1+β

γ(1−β) + γ
]

then q(L1,H0) = q(H0, L1) = 1
2 ,

q(L1, L0) = 1 and q(L0, L1) = 0.

vii) If η > δ(1+γ2)2

4γ3(1−β) −
δβ(1+γ2)

2γ then q(L1,H0) = q(L1, L0) = 1 and q(H0, L1) =

q(L0, L1) = 0.

Proof.

Part i-iii) For parameters that satisfy the condition iv) or v) the proof parallels that

of part i)-iii) of Proposition 1.

If eta is as required in parts vi) or vii), then it is shown below that λH0→L1 ≤
1+γ2

2βγ2 and λH1→L1 ≤ 1. Assumption 3 is equivalent to αL1,L1pi(L1, L1) ≥

δ
[
αH1,L1 + αH0,L1

1+γ2

2βγ2

]
and therefore assures that the dual condition for q(L1, L1)

holds. This implies that the other dual conditions of part i)-iii) also hold.

Part iv) and v)

Follows from Proposition 1 and Corollary 2.

Part vi)

Set the dual variables of binding incentive constraints as follows:

λH0→L1 =
βδ

(
1 + γ2

)2 − 2ηγ(1− β)
δ [γ2(2β − 1)− 1]

λL1→L0 =

(
(β − 1)γ2 − β − 1

)
∆ + 2βγ

(
γ2 − 1

)
η

((2β − 1)γ2 − 1)∆

λL0→H0 =
β

[(
(β − 1)γ2 − β − 1

)
∆− 2(β − 1)γη

]
(β − 1) ((2β − 1)γ2 − 1) ∆

λH1→L1 = 1

These dual variables are constructed such that

∀η ∈
(

δ
2

[
1+β

γ(1−β) + γ
]
, δ(1+γ2)2

4γ3(1−β) −
δβ(1+γ2)

2γ

]
the dual condition for q(L1,H0) =

q(H0, L1) = 0.5, namely ψ(L1,H0) = ψ(H0, L1), is satisfied. This condition

implies that the dual condition for q(L1, L0) = 1 also holds. If η = δ
2

[
1+β

γ(1−β) + γ
]

then λH0→L1 = 1, λL0→H0 = 0 and λL1→L0 = 1 + 2β
(1−β)(γ2+1) all these variables
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are monotonically increasing in η. On the other hand, for η = δ(1+γ2)2

4γ3(1−β) −
δβ(1+γ2)

2γ

the dual variables adopt the values stated in part vii). For all values in between,

it can be verified easily that the dual condition for r(L0,H1) = 0, namely

λL1→L0 ≤ 1
1−β + β(1−γ2)

(1−β)(1+γ2)λH0→L1 holds. Besides, ψ(L1,H0) = ψ(H0, L1)

implies that the dual condition for q(L1, L0) = 1 also holds.

Part vii)

The allocation of part vii) is such that all four rent payments are strictly positive.

Using the four associated dual equations yields the following dual variables:

λH0→L1 =
1 + γ2

2βγ2

λL1→L0 =
1 + γ2

2 (1− β) γ2

λL0→H0 =
1 + (1− 2β) γ2

2 (1− β) γ2

λH1→L1 = 1

For η > δ(1+γ2)2

4γ3(1−β) −
δβ(1+γ2)

2γ , direct computation shows that the dual constraint

ψ(L1,H0) ≥ ψ(H0, L1) is satisfied. Besides, ψ(L1,H0) > ψ(H0, L1) implies that

the dual condition for q(L1, L0) = 1 also holds.

Proposition 2 fully characterizes the optimal allocation of the full problem. Due

to the assumption that the surplus of the project is high enough so that it is always

assigned to some firm, Part i)-iii) remain unchanged compared to Proposition 1.

Part iv) and v) also equal those of Proposition 1 by corollary 2.

If the approach is very important, as in Part vi) and vii) of Proposition 2,

the upward incentive constraints bind and the optimal allocation differs from the

solution of the relaxed problem. In Part vi), L1 firms are less often and H0 firms

are more often employed in comparison to the relaxed case although the gross profit

π(L1,H0) is higher than π(H0, L1). By distorting the allocation, the contractor

effectively deters L0 firms from mimicking H0 ones without having to incur any

rents to low value firms. In Part vii), the value of the right approach is extremely

high and justifies not to distort the allocation and always to employ the firm which

offers the highest gross profit even though this invokes very high rent payments.

This case is illustrated in Corollary 3. Note that although the contractor has all the

bargaining power, both firms earn strictly positive rents regardless of their type.

Corollary 3. If assumption 3 holds and η > δ(1+γ2)2

4γ3(1−β) −
δβ(1+γ2)

2γ , the contractor

always employs the firm with the highest probability of fit and pays positive rents to

both firms, regardless of their type.

Proof. Follows directly from Lemma 7 and Proposition 2, Part vii).
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8 Conclusion

This paper shows that rents which arise due to cost uncertainty may induce special-

ized firms to excessively recommend the approach they are specialized on. Adverse

incentives of sellers to provide wrong information on the appropriateness of their

services may be mitigated by rewarding firms which are not hired or by committing

to take their recommendations less into account than would be efficient. Never-

theless, the sellers’ private information allows them in most cases to extract higher

rents than in a benchmark case without asymmetric information on the appropri-

ateness of their approach. If the bonus gained by the proper approach is neither

too low nor too high, the need to pay additional information rents has detrimental

effects on allocative efficiency.

If the additional bonus from choosing the superior approach is low compared to

the base surplus, the optimal contracts generate the same outcome as a standard

auction with two participants and private information on the fit becomes irrele-

vant in optimum. In contrast, if the proper approach yields high additional value,

the contractor employs only firms signaling to offer the appropriate approach even

though this requires paying information rents to firms indicating to work with the

wrong approach and which are not employed finally.

Coming back to the introductory examples: It is common practice that clients

engage multiple consultancies to analyze their problems and make suggestions how

to proceed. After the suggestions are made, the client awards one consultancy

with the project. In hope to acquire a profitable project, consultancies often agree

to carry out the introductory screening at low fares. But exactly this practice

exacerbates the adverse incentives of the consultancies for claiming to offer the

superior approach against better judgment. Hence if the contractor deems the

proper approach to be crucial, he should theoretically offer a high payment in case

a consultancy is not awarded with the project finally.

Sometimes, other means to prevent adverse incentives in credence good markets

are feasible. A widespread practice is to consult a neutral expert who cannot gain

from selling the credence good on which he gives advice. This practice is feasible

if the costs to diagnose customers’ needs and to acquire the knowledge of products

are low compared to the cost uncertainty of the agents. Another mechanism to

alleviate fraud is that sellers might build up a reputation as honest adviser which

helps them to acquire new customers or to attract new orders from existing ones.

This illustrates that there is still scope to further research on credence goods.

One step which might constitute a good advice for further work might be to analyze

cost uncertainty in a credence goods market equilibrium framework.
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Appendix

A: General results

Benchmark case

Lemma 8 the general counterpart of Lemma 1:

Lemma 8. Any optimal scheme of the benchmark case has the following properties:

if L > δ 1−β
β is satisfied:

i) No rents are paid to firms with a low net value.

ii) Constraint (8) binds for firms with good or bad signal of fit and

R(H,xi) = δE[qi((L, xi), θ̃j)|xi].

iii) Firms with high net value are weakly more often employed then firms with low

net value:

q((H,xi), θj) ≥ q((L, xi), θj) ∀θj ∈ Θj

iv) If both firms provide the same net value, the firm with lower probability of fit is

never employed: q((ṽi, 0), (ṽi, 1)) = 0.

v) Generically, in all optimal schemes firms are equally often em-

ployed if both firms report inconsistently a good or a bad signal of fit:

q((ṽi, 0), (ṽi, 0)) = q((ṽi, 1), (ṽi, 1)).

vi) Holding the other firm’s type constant, a firm is weakly more of-

ten employed if it reports a good signal of fit instead of a bad one:

q((ṽi, 1), θj) ≥ q((ṽi, 0), θj) ∀θj ∈ Θj.

Proof of Lemma 8.

I first prove all parts of the Lemma ignoring constraint (9) and then prove afterwards

that all solutions that satisfy properties i) to v) also satisfy (9).

Part i)

Suppose to the contrary that an optimal scheme involves R(L, xi) > 0. After setting

R(L, xi) = 0, incentive constraint (8) still holds and thus the new solution is feasible

but Uc has increased. Hence R(L, xi) > 0 cannot be optimal.

Part ii)

Suppose that (8) did not bind for some (H,xi). Then R(H,xi) could be decreased by

ε small enough such that (8) still hold. This would increase Uc and thus contradicts

optimality.

Part iii)

Define

ψ(θi, θj) =

{
αθi,θjπ(θi, θj) if xi = H

αθi,θj
π(θi, θj)− δα(H,xi),θj

if xi = L

A necessary condition for q((L, xi), θj) > 0 is α(L,xi),θj
π((L, xi), θj) −

23



δα(H,xi),θj
≥ max{0, ψ(θj , (L, xi))}. But this implies that α(H,xi),θj

π((H,xi), θj) >

max{0, ψ(θj , (H,xi))} which is a sufficient condition for q((H,xi), θj) = 1.

Part iv)

Note that ψ((vi, 1), θi) > ψ((vi, 0), θi). Hence the necessary condition

ψ((vi, 0), (vi, 1) ≥ max{0, ψ((vi, 1), (vi, 0))} for q((vi, 0), θi) > 0 is never satisfied.

Part v)

Note that ψ((ṽi, 0), (ṽi, 0)) = ψ((ṽi, 1), (ṽi, 1)). Hence iff ψ((ṽi, 0), (ṽi, 0)) > 0 then

ψ((ṽi, 1), (ṽi, 1)) > 0

To prove that any scheme that involves R(H,xi) = δE[qi((L, xi), θ̃j)|xi] and

q((H,xi), θj) ≥ q((L, xi), θj) ∀θj ∈ Θj always satisfies (9), observe that

E
[
ri((H,xi), θ̃)− δqi((H,xi), θ̃j)|θi

]
= δE

[
qi((L, xi), θ̃j)− qi((H,xi), θ̃j)|θi

]
≤ 0

which means that indeed (9) holds.

Part vi)

Note that ψ((ṽi, 1), θj) ≥ ψ((ṽi, 0), θj) ∀θj ∈ Θj and ψ((θi, ṽj , 0)) ≥
ψ((θi, ṽj , 1)) ∀θj ∈ Θj . Hence ψ((ṽi, 0), θj) ≥ ψ((θj , ṽi, 0) implies ψ((ṽi, 1), θj) ≥
ψ((θj , ṽi, 1).

Relaxed Problem

Note that Lemma 2, Lemma 3 and Lemma 4 are formulated and proven for unre-

stricted L and thus carry over completely.

The result of Lemma 4 implies that the difference of payoffs between mimicking

a L1 instead of a L0 firm is in every optimal scheme nonnegative. By deducting

(13) from (12) and (15) from (14) and inserting αH1,H0 = β
1−βαH1,L0 one gets:

αH1,L0

[
q(L1, L0) +

β

1− β
q(L1,H0)− q(L0, L0)

]
+αH1,L1 [q(L1, L1)− q(L0, L1)] ≥ 0

(30)

αH0,L0

[
q(L1, L0) +

β

1− β
q(L1,H0)− q(L0, L0)

]
+αH0,L1 [q(L1, L1)− q(L0, L1)] ≥ 0

(31)

Equations (30) and (31) denote the difference in expected payoff for H1 and

H0 firms respectively. Lemma 9 and Proposition 3 are the general counterparts to

Proposition 1.

Lemma 9. i) In any optimal solution q(L1, L0)+ β
1−β q(L1,H0)− q(L0, L0) ≥ 0.

ii) Either (H1 → L0) and (H0 → L0) bind, or (H1 → L0) bind while (H0 → L0)

is slack or both (H1 → L0) and (H0 → L0) are slack.

iii) If (H1 → L0) and (H0 → L0) bind, then q(L1, L0) + β
1−β q(L1,H0) −

q(L0, L0) = 0 and q(L1, L1)− q(L0, L1) = 0
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Proof of Lemma 9. Part i)

Suppose to the contrary that q(L1, L0) + β
1−β q(L1,H0) − q(L0, L0) < 0. Then

q(L1, L1) − q(L0, L1) > 0 must be true for (31) and (30) to hold. q(L1, L1) −
q(L0, L1) > 0 implies that q(L0, L1) < q(L1, L1) ≤ 0.5. Similarly, q(L1, L0) +

β
1−β q(L1,H0) − q(L0, L0) < 0 implies that q(L1, L0) < q(L0, L0) ≤ 0.5. Hence

q(L1, L0) + q(L0, L1) < 1 and thus µL1,L0 = 0. Now consider the following cases:

a) Both (30) and (31) are slack. Then the dual variables have λH1→L1 =

1 and λH0→L1 = 1. q(L1, L1) > 0 requires the dual constraint

αL1,L1π(L1, L1, ) ≥ δ(αH1,L1 + αH0,L1). q(L1, L0) + q(L0, L1) < 1 re-

quires αL1,L0π(L1, L0, ) ≤ δ(αH1,L1 + αH0,L1), which is impossible as

αL1,L0π(L1, L0, ) > αL1,L1π(L1, L1).

b) Equation (30) holds with equality, (31) is slack. Then λH0→L1 =

1 and λH0→L0 = 0. Now the dual constraint for q(L1, L0)

is αL1,L0π(L1, L0) ≤ δ(αH1,L0λH1→L1 + αH0,L0). This requires

αL1,L1π(L1, L1) < δ(αH1,L1λH1→L1 + αH0,L1). But q(L1, L1) > 0 requires

αL1,L1π(L1, L1) ≥ δ(αH1,L1λH1→L1 + αH0,L1), which is impossible.

c) (30) is slack and (31) holds with equality. This case cannot occur because

αH1,H0 > αH0,H0 and αH1,H1 < αH0,H1 and hence if (31) holds with equality,

(30) must be violated.

Part ii)

Suppose to the contrary, that (30) holds with equality and (31) is slack. Be-

cause αH1,H0 > αH0,H0 and αH1,H1 < αH0,H1 this would require that q(L1, L0) +
β

1−β q(L1,H0) − q(L0, L0) < 0 and q(L1, L1) − q(L0, L1) > 0. But according to

Part i) of this Lemma it is impossible.

Part iii)

Suppose to the contrary that (31) and (30) hold with equality but q(L1, L0) +
β

1−β q(L1,H0) − q(L0, L0) > 0 and hence q(L1, L1) − q(L0, L1) < 0. Then as

αH1,H0 > αH0,H0 and αH1,H1 < αH0,H1 condition (30) would be violated which

contradicts the hypothesis.

Proposition 3. i) For η high enough, the contractor employs always the firm

with the highest conditional probability of a fit. The optimal scheme involves

q(L1,H0) = q(L1, L0) = 1, q(L1, L1) = q(L0, L0) = 0.5, q(L0, L1) = 0, i.e.

For η high enough, the optimal scheme involves both incentive constraints (13) and

(15) slack.

ii) For η low enough, the optimal scheme involves q(L1,H0) = 0.

iii) If additionally L > δ 1−β
β then the optimal scheme involves q(L1, L0) =

q(L1, L1) = q(L0, L0) = q(L0, L1) = 0.5, i.e. if both firms announce to have

low net value, then each firm is employed with probability 0.5 irrespective of the fit

signal.
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iv) If additionally L < δ 1−β
β , then the optimal scheme involves q(L1, L0) =

q(L1, L1) = q(L0, L0) = q(L0, L1) = 0, i.e. firms with low net value are never

employed.

Proof of Proposition 3.

Part i):

The proof of optimality is based on the standard duality theorem. First note that

the with the employment probabilities given in the proposition, both incentive

constraints (13) and (15) slack. As in addition feasibility requires r(H1,H0) >

0, r(H0,H1) > 0, the only permissible choice of dual variables for the incentive

constraints is: λH1→L1 = λH0→L1 = 1, λH1→L0 = λH0→L0 = 0. Now define the

dual constraints of all binding resource constraints with q(θi, θj) > 0 as follows:

µθi,θj = αθi,θjπ(θi, θj)− δαH1,θjλH1→θi − δαH0,θjλH0→θi

Note that for η high enough, all those variables are positive as required. Now

consider the dual condition for q(L0, L1) = 0: µL1,L0 = αL1,L0π(L1, L0) +

δαH1,L0 + δαH0,L0 > αL0,L1π(L0, L1). This condition is always satisfied as

π(L1, L0) − π(L0, L1) grows arbitrarily in η. Using the same argument, it can

be shown that the dual condition for q(L0,H1) = 0 is also satisfied.

Part ii)

Suppose to the contrary that q(L1,H0) > 0. The associated dual constraint requires

that αL1,H0 (π(L1,H0)− π(H0, L1)) ≥ δαH1,H0λH1→L1 + δαH0,H0λH0→L1 which

is impossible because π(L1,H0)−π(H0, L1) is negative for fixed δ and η low enough

while αH1,H0λH1→L1 + αH0,H0λH0→L1 ≥ 0.

Part iii)

As all incentive constraints hold with equality, no associated dual variable has to be

set equal to zero. Choose the following dual variables for the incentive constraints:

λH1→L1 = 1

λH0→L1 =
αL1,L0π(L1, L0)− αL0,L1π(L0, L1) + δαH0,L1 − δαH1,L0

δ (αH0,L0 + αH0,L1)

λH0→L0 =
−αL1,L0π(L1, L0) + αL0,L1π(L0, L1) + δαH0,L0 + δαH1,L0

δ (αH0,L0 + αH0,L1)

λH1→L1 = 0

Note that for η small enough, those dual variables are nonnegative. Furthermore

we have for η → 0 that λH0→L1 ↘ 0 and λH0→L0 ↗ 1. Note that these variables

satisfy the following dual conditions associated stemming from r(L1, L0) > 0 and

r(L0, L1) > 0: λH1→L0+λH1→L1 = 1 and λH0→L0+λH0→L1 = 1. Next note that we

have q(L1, L0)+q(L0, L1) = 1 and hence the corresponding dual variable µL1,L0 can

adopt any nonnegative value. Choose µL1,L0 = αL1,L0π(L1, L0)−δαH1,L0λH1→L1−

26



δαH0,L0λH0→L1 so that the associated dual constraint for q(L1, L0) > 0 is satisfied.

Now we have

lim
η↘0

µL1,L0 = αL1,L0L− δαH1,L0 = αL1,L0

(
L− δ

1− β

β

)
> 0

Hence by continuity there must exist some η̂ low enough which satisfies: η < η̂ ⇒
µL1,L0 ≥ 0. It can be easily verified that the construction of µL1,L0 also satisfies

the dual constraint that arises from q(L0, L1) > 0.

Now turn to the resource constraint q(L1, L1) ≤ 0.5 which also holds with equality.

Choose µL1,L1 = αL1,L1π(L1, L1) − δαH1,L1λH1→L1 − δαH0,L1λH0→L1 and note

that limη↘0 µL1,L1 = αL1,L1L − δαH1,L1 = αL1,L1

(
L− δ 1−β

β

)
> 0. Hence the

same argument as above applies.

For the binding resource constraint q(L0, L0) ≤ 0.5 choose µL0,L0 =

αL0,L0π(L0, L0)−δαH1,L0λH1→L0−δαH0,L0λH0→L0 and note that limη↘0 µL0,L0 =

αL0,L0L − δαH0,L0 = αL0,L0

(
L− δ 1−β

β

)
> 0. Hence the same argument as above

applies.

Part iv) Suppose to the contrary that there exists some q(Lx,Ly) > 0, x, y ∈
{0, 1} and define z = 1−x. The associated dual constraints for an optimal solution

are:

δαHx,LyλHx→Lx + δαHz,LyλHz→Lx + µLx,Ly = αLx,Lyπ(Lx,Ly)

δαHx,LyλHx→Lz + δαHz,LyλHz→Lz + µLz,Ly ≥ αLz,Lyπ(Lz, Ly)

Feasibility requires that r(L1, L0) > 0 and r(L0, L1) > 0 and hence λHx→Lx +

λHx→Lz = 1 and λHz→Lx +λHz→Lz = 1 must be satisfied. Adding both constraints

yields

δαHx,Ly + δαHz,Ly + µLz,Ly + µLx,Ly ≥ αLx,Lyπ(Lx,Ly) + αLz,Lyπ(Lz, Ly)

This is impossible because limη↘0 δαHx,Ly + δαHz,Ly − αLx,Lyπ(Lx,Ly) −
αLz,Lyπ(Lz, Ly) < 0 by hypothesis and both µLx,Ly and µLz,Ly must be non-

negative. Hence there do not exist nonnegative dual variables which permit

q(Lx,Ly) > 0.

Proposition 4 is the general counterpart to Corollary 1:

Proposition 4. Generically, employment probabilities for firms that announce a

good fit signal are weakly higher in an optimal scheme of the benchmark case than in

any of the optimal schemes of the relaxed problem. Generically, an optimal scheme

in the benchmark case in which employment probabilities for firms that announce a

good fit signal are weakly higher than in any of the optimal schemes of the relaxed

case.

Proof. Employment probabilities for firms with high net value.

Suppose that q(H1, θ̃j) > 0. Then π(H1, θ̃j) ≥ 0 and π(H1, θ̃j) ≥ π(θ̃j ,H1). But
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these two conditions guarantee that qB(H1,H1) = 0.5 and qB(H1, θ̃j) = 1 for

θ̃j ∈ H0, L0, L1.

Employment probabilities for firms with low net value.

Consider two cases:

- The incentive constraint (13) is slack. Then for any optimal solution with

q(L1, L0) > 0 the corresponding dual constraint is αH1,L0π(H1, L0) ≥
δαH1,L0 + δαH0,L0. This implies αH1,L0π(H1, L0) > δαH1,L0 which is suf-

ficient for qB(H1, L0) = 1.

- The incentive constraint (13) binds. Then by Lemma 9, Part ii), q(L1, L0) +
β

1−β q(L1,H0) − q(L0, L0) = 0 and q(L1, L1) − q(L0, L1) = 0. Hence if

q(L1, θ̃j) > 0 then also q(L0, θ̃j) > 0 for θ̃j ∈ {L0, L1,H0}. The corre-

sponding dual constraints are

αL1,θ̃j
π(L1, θ̃j) ≥ δαH1,θ̃j

λH1→L1 + δαH0,θ̃j
λH0→L1

and

αL0,θ̃j
π(L0, θ̃j) ≥ δαH1,θ̃j

λH1→L0 + δαH0,θ̃j
λH0→L0

Adding up both inequalities and using λH1→L1 + λH1→L0 = 1 and λH0→L1 +

λH0→L0 = 1 yields

αL1,θ̃j
π(L1, θ̃j) + αL0,θ̃j

π(L0, θ̃j) ≥ δαH1,θ̃j
+ δαH0,θ̃j

To show that the last inequality implies αL1,θ̃j
π(L1, θ̃j) > δαH1,θ̃j

suppose to

the contrary that this αL1,θ̃j
π(L1, θ̃j) ≤ δαH1,θ̃j

. Then π(L0, θ̃j) < π(L1, θ̃j)

implies αL0,θ̃j
π(L0, θ̃j) < δαH0,θ̃j

which is a contradiction. The implication

αL1,θ̃j
π(L1, θ̃j) > δαH1,θ̃j

is sufficient to have qB(αL1,θ̃j
).

Lemma 10 analyzes the optimal employment probabilities of firms with low net

value and high probability of fit, given that the second firm offers a high net value

but a low probability of fit. In this case there is a tradeoff between the bonus minus

rents on the one hand and the difference in net values on the other. Lemma 10,

Part ii) establishes that q(L1,H0) > 0 is usually chosen only if there is a high bonus

for choosing the right approach. Then it is optimal to employ only firms with a

high probability of fit and incur high rent payments.

Lemma 10. Suppose π(H0, L1) > 0. If αL1,H0 [π(L1,H0)− π(H0, L1)] −
δ [αH1,H0 + αH0,H0] > 0 then q(L1,H0) = 1 and otherwise q(L1,H0) = 0. If

q(L1,H0) = 1 then both incentive constraints (H1 → L0) and (H0 → L0) are slack.

ALTE VERSION i) In any optimal scheme, if q(L1,H0) > 0 then q(L0, L1) = 0

and q(H0, L1) = 0.

ii) If q(L1,H0) > 0 and π(H0, L1) > 0 then q(L1,H0) = 1, q(L1, L0) = 1 and the

incentive constraints (14) and (13) are slack.
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Proof of Lemma 10.

Part i):

Suppose to the contrary that q(L1,H0) > 0 and q(L0, L1) > 0. The associated

dual constraint for q(L1,H0) > 0 is

αL1,H0π(L1,H0) = max{αL1,H0π(H0, L1), 0}+δαH1,H0λH1→L1 +δαH0,H1λH0→L1

Using π(L1,H0) = π(L1, L0) and π(H0, L1) > π(L0, L1) yields:

αL1,L0π(L1, L0) > αL1,L0π(L0, L1) + δαH1,L0λH1→L1 + δαH0,L1λH0→L1

On the other hand, the dual constraint for q(L0, L1) > 0 is:

αL0,L1π(L0, L1) = µL1,L0 + δαH1,L1λH1→L0 + δαH0,L1λH0→L0

≥ αL1,L0π(L1, L0)− δαH1,L0λH1→L1 − δαH0,L0λH0→L1

+ δαH1,L1λH1→L0 + δαH0,L1λH0→L0

This implies:

αL1,L0π(L1, L0) ≤ αL0,L1π(L0, L1) + δαH1,L0λH1→L1 + δαH0,L0λH0→L1

which is impossible.

To see that q(H0, L1) = 0, suppose to the contrary that q(L1,H0) > 0

and q(H0, L1) > 0. The dual constraint for q(H0, L1) > 0 is π(H0, L1) =

max{π(L1,H1), 0}. The dual constraint for q(L1,H1) > 0 requires that

π(L1,H1) > 0, hence the constraint simplifies to π(H0, L1) = π(L1,H1). Plugging

this into the dual constraint for q(L1,H1) > 0 yields immediately a contradiction.

Part ii):

Suppose to the contrary that q(L1,H0) > 0 and π(H0, L1) > 0 but q(L1, L0) < 1.

From Part i) q(L0, L1) = 0, so that q(L1, L0) + q(L0, L1) > 1 and hence the dual

variable µL1,L0 = 0. The associated dual constraint for q(L1,H0) > 0 is

αL1,H0π(L1,H0) = αL1,H0π(H0, L1) + δαH1,H0λH1→L1 + δαH0,H1λH0→L1

This implies αL1,L0π(L1, L0) > δαH1,L0λH1→L1 + δαH0,L1λH0→L1

which means that µL1,L0 must be greater than zero - a contradiction. Hence

q(L1, L0) = 1 and q(L0, L1) = 0 which renders both (14) and (13) slack.

The Full Problem

Note that the formulation and the proof of Lemma 5 applies fully to general param-

eters. Proposition 5 gives sufficient conditions which guarantee that solutions of the

relaxed problem also satisfy inequality (24) and is the counterpart to Corollary 2.

Proposition 5. If αL1,H0π(L1,H0) − δ(αH0,H0 + αH1,H0) <

max{0, αL1,H0π(H0, L1)} is satisfied and either π(H0, L1) > 0 or

π(L1, L1) − δ(αH0,L1 + αH1,L1) < 0 or αL0,L1 − αL0,H0 < 0 holds, then the

optimal solution of the relaxed problem also solves the fully constrained problem.
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Proof. First note that any solution of the relaxed problem involves r(L0,H1) =

r(L1,H0) = 0. The condition αL1,H0π(L1,H0) − δ(αH0,H0 + αH1,H0) <

max{0, αL1,H1π(H0, L1)} implies that the relaxed solution involves q(L1,H0) = 0.

It also implies that whenever αL1,L0π(L1, L0) − δ(αH0,L0 + αH1,L0) > 0 then

π(H0, L1) > 0 and hence π(H0, L0) > 0 which is a sufficient condition for

q(H0, L0) = 1. This means that the first bracket in condition 24 is always non-

positive.

- If additionally π(H0, L1) > 0 then q(H0, L1) = 1 and hence inequality (19)

is satisfied for all feasible values of q(L1, L1).

- If additionally π(L1, L1) − δ(αH0,L1 + αH1,L1) < 0 then any solution of the

relaxed problem involves q(H0, L1) ≥ q(L1, L1) = 0 and hence inequality (19)

is satisfied.

- If additionally αL0,L1 − αL0,H0 < 0 then even in the case q(L1, L1) = 0.5,

which implies q(H0, L0) = 1 and q(H0,H0) = 0.5, inequality (19) is satisfied.

Lemma 6 of section 7 also applies to general parameters and asserts formally

which of the incentive constraints bind if the solution of the relaxed problem violates

inequality (24). A very important case of extreme parameters is when the choice of

the appropriate approach is very important. The following proposition states that

under sufficiently high η the contractor finds it optimal to incur very high rents in

order to employ always the firm whose approach is more likely to be superior.

Proposition 6. For η high enough, the optimal solution has the following proper-

ties:

i) The contractor always employs the firm which is more likely to offer the

right approach: q(H1,H0) = q(H1, L0) = q(L1,H0) = q(L1, L0) = 1 and

q(H0,H1) = q(L0,H1) = q(H0, L1) = q(L0, L1) = 0.

ii) If both firms receive signals that are not consistent but differ in net value, then

the firm with the higher net value is employed: q(H1, L1) = q(H0, L0) = 1 and

q(L1,H1) = q(L0,H0) = 0.

iii) If both firms have identical type, then they are employed with probability 1
2 :

q(H1,H1) = q(H0,H0) = q(L1, L1) = q(L0, L0) = 1
2 .

iv) The contractor pays positive rents to both firms, irrespective of their type.

Proof. Part i)

Note that for given δ, the unique generic solution is characterized completely by

this proposition. Using all nonnegative employment probabilities and the four rent

variables as basis one can derive straight forward the following dual variables for
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the binding incentive constraints.

λH0→L1 =
1 + γ2

2βγ2

λL1→L0 =
1 + γ2

2 (β − 1) γ2

λL0→H0 =
1 + (1− 2β) γ2

2 (β − 1) γ2

λH1→L1 = 1

Note that all dual variables are defined in terms of fixed parameters. Define the dual

variable for the resource constraint q(L1,H0)+ q(H0, L1) ≤ 1 as follows: µL1,H0 =

αL1,H0π(L1,H0)−δ (αH1,H0λH1→L1 + αH0,H0λH0→L1). Note that this satisfies the

dual constraint for q(L1,H0) by construction and for high η and hence π(L1,H0)

high enough µL1,H0 ≥ 0 as required. In addition µL1,H0 − αH0,L1π(H0, L1) =

0.5η
(
1− β2

)
γ2αL1,H0 − δαH0,L1 − δ (αH1,H0λH1→L1 + αH0,H0λH0→L1) which is

positive for η high enough. This means that indeed q(H0, L1) = 0 must be true.

Using the same argument, one can show that the dual constraints for q(L1, L0) = 1

and q(L0, L1) = 0 are also satisfied.

Part iv) and the level of the rents can be determined uniquely by the four binding

constraints stated in Lemma 6, Part ii).

B: Proofs of Lemmas and Propositions

Proof of Lemma 3. Suppose q(·, ·), r̃(·, ·) is a feasible scheme with

r((vi, xi), (vj , xj)) 6= 0 and xi + xj 6= 1 for some (xi, xj) . Then all

incentive constraints are satisfied. Now define r̂(·, ·) as follows: 18

r̂(H1,H0) =
1

αH1,H0

∑
θj∈Θi

(
αH1,θj

r̃(H1, θj)
)

r̂(H1, θj) = 0 ∀ θj 6= H0

r̂(H0,H1) =
1

αH0,H1

∑
θj∈Θi

(
αH0,θj

r̃(H0, θj)
)

r̂(H0, θj) = 0 ∀ θj 6= H1

Note that by construction αH1,H0r̂(H1,H0) =
∑

θj∈Θi
(αH1,θj

r̃(H1, θj)) and

αH0,H1r̂(H0,H1) =
∑

θj∈Θi
(αH0,θj r̃(H0, θj)). Hence all downward incentive con-

straints also hold under r̂(·, ·) when q(·, ·) remains unchanged. Now consider the

18Note that for the proof to go through it is important that positive rents are only paid for

consistent fit-signals. In principle it is also possible to construct schemes with r̂(H1, L0) 6= 0.
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horizontal incentive constraint H1 → H0:

αH1,H0r̂(H1,H0)

=
∑

θj∈Θi

αH1,θj
r̃(H1, θj)

≥
∑

θj∈Θi

αH1,θj

αH0,θj

αH0,θj
r̃(H0, θj)

≥
∑

θj∈Θi

αH1,H1

αH0,H1
αH0,θj r̃(H0, θj)

=
αH1,H1

αH0,H1
αH0,H1r̂(H0,H1)

= αH1,H1r̂(H0,H1)

The first inequality follows because by hypothesis the incentive constraint holds for

r̃(·, ·), the next inequality is due to the definition of αθi,θj
. The second inequality

is strict if γ > 0.

Exactly the same argument can be used to show that the incentive constraint

(H0 → H1) still holds for r̂(·, ·). As all rents for low value agents are zero in

optimum, horizontal incentive constraints for low value firms are always satisfied.

Note that by construction of r̂(·, ·), the expected payoff Uc remains unchanged.

Hence the new scheme is feasible and optimal.

Proof of Lemma 4. Step 1: Show that (12) must hold with equality. Suppose to

the contrary that (12) is slack. Distinguish two cases:

• Incentive constraint (13) is slack.

Then there exists an ε small enough, s.t. r(H1,H0) can be lowered by ε and

both (12) and (13) still hold, which contradicts optimality.

• Incentive constraint (13) binds.

Deducting (13) from (12), applying Lemmas 2, inserting q(L0,H0) =

q(L0,H1) = q(L1,H1) = 0 and rearranging yields:

αH1,L0 (q(L1, L0)− q(L0, L0)) + αH1,L1 (q(L1, L1)− q(L0, L1))

+αH1,L0q(L1,H0) < 0

This condition is only satisfied if q(L1, L0) − q(L0, L0) < 0 or q(L1, L1) −
q(L0, L1) < 0 or both. By the resource constraint q(L1, L0) + q(L0, L1) ≤ 1

this is only possible if q(L1, L0) < 1. Hence it is possible to increase q(L1, L0)

by some ε small enough and increase r(H0,H1) by εδ
αH0,L0
αH0,H1

which satis-

fies all incentive constraints and changes Uc by ε (αL1,L0π(L1, L0)− δαH0,L0).

Note that in order for (12) to be slack, q(L0, L0) > 0 or q(L0, L1) > 0. If

q(L0, L0) > 0, the dual constraints require αL0,L0π(L0, L0) ≥ δαH1,L0. But

by definition of π(·, ·) and α·,· this implies αL1,L0π(L1, L0)− δαH0,L0 > 0. If
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q(L0, L1) > 0, the dual constraint yields αL0,L1π(L0, L1) ≥ δαH1,L1 which

also implies αL1,L0π(L1, L0) − δαH0,L0 > 0. If q(L1, L0) + q(L0, L1) = 1,

then q(L0, L1) has to be decreased by ε and r(H1,H0) can be decreased by

εδ
αH1,L1
αH1,H0

which changes Uc by εαL1,L0 [π(L1, L0)− π(L0, L1)] which is always

positive. Hence in all cases the change would be profitable which contradicts

optimality.

Step 2: Show that (14) must hold with equality. Suppose to the contrary that

(14) is slack. Distinguish two cases:

• Incentive constraint (15) is slack.

Then there exists an ε small enough, s.t. r(H0,H1) can be lowered by ε and

both (14) and (15) still hold, which contradicts optimality.

• Incentive constraint (15) binds.

Deducting (15) from (14) and rearranging yields:

αH0,L1 (q(L1, L0)− q(L0, L0)) + αH0,L1 (q(L1, L1)− q(L0, L1)) < 0

Now exactly the same argument as before can be applied.

Proof of Lemma 5. I show that under the requirements of the lemma, all incentive

constraints (20)-(23) are satisfied.

- Constraint (L1 → H1):

In any solution of the relaxed problem r(H1,H0) is determined by equa-

tion (18), r(L1,H0) = 0 and hence the constraint (L1 → H1) becomes:

αL1,H0

αH1,H0

∑
θj∈Θj

(
δαH1,θjq(L1, θj)

)
−

∑
θj∈Θj

(
δαL1,θjq(H1, θj)

)
≤ 0

Using 1−β
β αH1,θj = αL1,θj yields:∑

θj∈Θj

αL1,θj
(q(L1, θj)− q(H1, θj)) ≤ 0

and in any optimal solution of the relaxed case q(H1, θj) ≥ q(L1, θj) ∀θj ∈
Θj .

- Constraint (L0 → H1):

Inserting equation (18) in (21) and setting r(L0,H1) = 0 yields:

αL0,H0

αH1,H0

∑
θj∈Θj

δαH1,θjq(L1, θj)−
∑

θj∈Θj

δαL0,θjq(H1, θj) ≤ 0

⇔ 1− γ2

1 + γ2

∑
θj∈Θj

δαL1,θj
q(L1, θj)−

∑
θj∈Θj

δαL0,θj
q(H1, θj) ≤ 0

This condition holds as 1−γ2

1+γ2αL1,θj ≤ αL0,θj ∀θj ∈ Θj and because (L0 →
H1) is satisfied.
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- Constraint (L1 → H0):

By hypothesis of this Lemma, constraint (L0 → H0) is satisfied and hence:

αL0,H1r(H0,H1)−
∑

θj∈Θj

δαL0,θjq(H0, θj) ≤ 0

⇒ αL1,H1r(H0,H1)− 1− γ2

1 + γ2

∑
θj∈Θj

δαL0,θj
q(H0, θj) ≤ 0

⇒ αL1,H1r(H0,H1)−
∑

θj∈Θj

δαL1,θj
q(H0, θj) ≤ 0

The last conclusion follows because 1−γ2

1+γ2αL0,θj
≤ αL1,θj

∀θj ∈ Θj . The last

line represents inequality (22).

Proof of Lemma 6,Part ii).

- Constraint (H1 → H0):

Suppose (H0 → L1) and (H1 → L1) bind.

αH1,H0r(H1,H0)

= αH1,H0r(L1,H0) + δ
∑

θj∈Θi

αH1,θj
q(L1, θj)

= αH1,H1

αH1,H0

αH1,H1
r(L1,H0) + δ

∑
θj∈Θi

αH1,θj

αH1,H1
q(L1, θj)


≥ αH1,H1

αH0,H0

αH0,H1
r(L1,H0) + δ

∑
θj∈Θi

αH0,θj

αH0,H1
q(L1, θj)


= αH1,H1r(H0,H1)

The last inequality comes from
αH1,θj

αH1,H1
≥ αH0,θj

αH0,H1
∀θj ∈ Θi.

- Constraint (H1 → L0):

Suppose that (H1 → L1) and (L1 → L0) bind. Then αH1,H0r(H0,H1) =

δ
∑

θj∈Θi
αH1,θj

q(L1, θj) + αH1,H1r(L1,H1). Hence it remains to show

that
∑

θj∈Θi
αH1,θjq(L1, θj) ≥

∑
θj∈Θi

αH1,θj
q(L0, θj). On the other hand,

(H0 → L1) and (L0 → H0) binding imply that
∑

θj∈Θi
αL0,θjq(L1, θj) −

q(H0, θj) ≥ 0. Note that in any solution q(L1,H1) = q(H0,H1) = 0 and

q(L0, θj) ≤ q(H0, θj) as ψ(L0, θj) < ψ(H0, θj). Hence if αL0,L0[q(L1, L0) −
q(H0, L0)] +αL0,H0[q(L1, L0)− q(H0, L0)] ≥ 0 the desired result follows. By

the binding constraints mentioned previously, this condition has to be true

if αL0,L1[q(L1, L1) − q(H0, L1)] ≤ 0. For αL0,L1[q(L1, L1) − q(H0, L1)] >

0, this implies ψ(H0, L0) > 0, ψ(H0,H0) > 0 and hence q(H0, L0) =

1, q(H0,H0) = 0.5. It also implies that ψ(H0, L1) < ψ(L1,H0) =
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ψ(L1, L0) and hence q(L0, L1) = 0 and q(L1, L0) = 1. Hence in this case

q(L1, L0)− q(H0, L0) = 0 and q(L1,H0)− q(H0,H0) ≥ 0, which also implies

αL0,L0[q(L1, L0)− q(H0, L0)] + αL0,H0[q(L1, L0)− q(H0, L0)] ≥ 0

- Constraint (H0 → H1):

Supposing (H0 → L1) and (H1 → L1) bind, using the same techniques as in

the previous paragraph one can show that (H0 → H1) is always satisfied.

- Constraint (H0 → L0):

Suppose (L0 → H0) binds. Then αH0,H1r(H0,H1) = αH0,H1r(L0,H1) +

δ
∑

θj∈Θi
αH0,θj

q(H0, θj). As ψ(H0, θj) > ψ(L0, θj) and hence q(H0, θj) ≥
(L0, θj), it directly follows that (H0 → L0) is satisfied.

- Constraint (L1 → H1):

First note that the implication ψ(L1, θj) ≥ max{0, ψ(θj , L1)} ⇒
ψ(H1, θj) ≥ max{0, ψ(θj ,H1)} is always true because ψ(θj , L1) = ψ(θj ,H1)

and ψ(H1, θj) > ψ(L1, θj). Hence q(H1, θj) ≥ q(L1, θj . Now suppose that

(H1 → L1) binds. Then:

r(L1,H0) = r(H1,H0)− δ

αH1,H0

∑
θj∈Θj

αH1,θj
q(L1, θj)

= r(H1,H0)− δ

αL1,H0

∑
θj∈Θj

αL1,θjq(L1, θj)

≥ r(H1,H0)− δ

αL1,H0

∑
θj∈Θj

αL1,θj
q(H1, θj)

Where the last inequality holds because q(H1, θj) ≥ q(L1, θj .

- Constraint (L1 → H0):

Suppose (L1 → L0) binds and (L0 → H0) is satisfied, then:

αL1,H0r(L1,H0) = αL1,H1r(L0,H1)

≥ αL1,H1r(H0,H1)− δ
∑

θj∈Θi

αL1,H1

αL0,H1
αL0,θj

q(L1, θj)

≥ αL1,H1r(H0,H1)− δ
∑

θj∈Θi

αL1,θj
q(L1, θj)

The first inequality is because (L0 → H0) is satisfied and the second inequality

holds because αL1,H1
αL0,H1

αL0,θj ≥ αL1,θj ∀θj ∈ Θi.

- Constraint (L0 → L1):

If (L1 → L0) binds this directly implies that r(L1,H0) = αL1,H1
αL1,H0

r(L0,H1) <

r(L0,H1) and hence (L0 → L1) is satisfied.

- Constraint (L0 → H1):

Pretending to be type H1 changes the expected payoff for an L1 firm as
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follows:

αL0,H0r(H1,H0)− δ
∑

θj∈Θi

αL0,θj
q(H1, θj)− αL0,H1r(L0,H1)

=
αL0,H0

αH1,H0
δ

∑
θj∈Θi

αH1,θj
q(H1, θj)− δ

∑
θj∈Θi

αL0,θj
q(H1, θj)

+ αL0,H0r(L1,H0)− αL0,H1r(L0,H1)

≤δ
∑

θj∈Θi

αL0,θj
q(H1, θj)− δ

∑
θj∈Θi

αL0,θj
q(H1, θj)

≤0

The first equality uses the fact that (H1 → L1) binds. The next inequality is

because
αL0,H0αH1,θj

αH1,H0
≤ 1 ∀θj ∈ Θi and in optimum r(L1,H0) ≤ r(L0,H1). The

last inequality is because in optimum q(H1, θj) ≥ q(L1, θj) ∀θj ∈ Θi.
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