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Abstract

One stylized fact of asset returns is that the interconnectedness in idiosyncratic returns is non-

negligible even in large dimensional systems. The network architecture of firms is the key to study

the transmissions of local shocks. However, such linkage data is usually unavailable for researchers.

This paper uses extensive text data to construct firms’ links that have not been documented in other

sources. Utilizing the novel text-based linkage data, I quantity the strength of local risk spillovers

in the equity market by estimating a heterogeneous spatial autoregressive model (HSAR) for the

de-factored (idiosyncratic) equity returns. The model outperforms several alternative methods in

terms of out-of-sample fit. The estimation results show that after removing the common risk factors

and industry risk factors, there is still a considerable degree of local risk spillovers, and with sub-

stantial industrial heterogeneity. By constructing spatial-temporal spillover matrix using estimated

parameters, we are able to identify the major systemic risk contributors and receivers, which are

of the interest to microprudential polices. From a macroprudential perspective, a rolling-window

analysis reveals that the strength of local risk spillovers increases during crisis period, when, on the

other hand, market factor loses its importance.
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1 Introduction

According to asset pricing theories such as the classical capital asset pricing model (CAPM) developed by Sharpe

(1964)[33], and the arbitrage pricing theory (APT) of Ross (1976)[30], asset returns have a common factor rep-

resentation with a strong pervasive component driven by a few common factors and an idiosyncratic component

that is weakly correlated. Many studies (Kou, Peng and Zhong (2018)[22], Baily et al. (2019[5],2020[6]) among

others) have found that the APT models with the factors in the existing literature seem to be not sufficient to

capture all the significant interdependencies in asset returns. Local risk spillovers may still play a non-negligible

role even in large-dimensional systems (see Gabaix (2011)[16], Acemoglue et al.(2012)[1] and Barigozzi and

Hallin (2017)[9] for example). The network architecture of firms is the key to study the local spillovers of

idiosyncratic risk. However, such linkage data is usually unavailable to researchers, which hinders the studies

of local dependencies.

This paper uses extensive text data to construct firms’ linkages. LexisNexis Academic news database has a

collection of news from a wide range of sources. Company names and tickers that are mentioned in the each

piece of news are tagged. By this feature, I identify firms that share business links by common news coverage.

The maintained assumption is that two companies share a link if they are the only two that get mentioned in

the same piece of news. The estimated full sample network is plotted in Figure 6, which has a core-periphery

structure. Big banks including JPMorgan Chase (JPM), Citi (C), Goldman Sachs(GS) and Bank of America

(BAC), and big hitech firms including Microsoft (MSFT), Apple (AAPL), Intel (INTC) and Oracle (ORCL),

and big manufacturers and conglomerates including General Electric (GE) and Procter & Gamble (PG) are the

most connected companies from the S&P500 universe, occupying the center of the graph. The novel dataset

complements existing network datasets in several perspectives. While existing network datasets are usually

lagged, incomplete, and cover certain types of links for certain types of firms1, the link mining method com-

plements these information sources by identifying additional types of links that have not been documented

elsewhere. In addition to interbank relationship and customer-supplier links, the method also finds strategic

partnerships, business lines acquisitions, investment banking relationships, funding relationships, similar legal

and regulatory exposures, and M&A relationships, etc. As a comparison, Figure 8 plots the network among

S&P500 firms using Compustat segments data and it is visible that much fewer links are identified. In response

to the lack of network data, there has been a strand of literature using pure statistical methods to estimate links

from a panel of equity returns/volatilites (see Diebold and Yilmaz (2014)[14], and Hale and Lopez (2019)[18],

Barigozzi and Hallin (2017)[9], Barigozzi and Brownlees (2019)[8]), and Demirer et al. (2018)[13]) Figure 9

plots the long-run variance decomposition network (LVDN), long-run Granger causality network (LGCN) and

partial correlation network (PCN) among S&P500 companies estimated from the idiosyncratic returns using

the high-dimensional methodology of Barigozzi and Hallin (2017)[9]. The links identified are very different from

period to period and very few links from the crisis LVDN appear before the crisis. The links that turn out

to be important for risk transmissions in the crisis period are like the hidden iceberg that is hard to detect

ex-ante and reveal themselves only when large shocks hit the system. Additional sources of information could

be fruitful in aiding the link detection, as the text-based network constructed using pre-crisis news outperforms

1For example, interbank network data only covers the lending relationships among banks, and they are not even publicly

available. The Compustat segment data is available to researchers, but it only contains customer-supplier link.
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LVDN estimated using pre-crisis sample in terms of detecting LVDN links from the crisis period.2 This is due

to the fact that our text-based links are much more persistent. On average, 59:32% of the linked pairs identified

in a year continue to get identified in later years, showing that the method identifies long-lived economic links

among companies. Taken together, it can be seen that the text-based network complements alternative network

datasets and can be viewed as a promising alternative to other datasets.

Utilizing the novel text-based linkages data, I quantify the strength of local risk spillovers in the equity mar-

ket using a heterogeneous spatial autoregressive model (HSAR) studied in Baily, Holly and Pesaran (2016)[4]

and Aquaro, Baily and Pesaran (2019)[2]. The model captures temporal dependence as well as spatial-temporal

dependence. It is flexible, and individual-specific parameters can be consistently estimated for any N as long as

T is large. Since the equity returns comovement reflects both exposures to common risk factors and local risk

spillovers, I first remove the strong cross-sectional dependence (CSD) by de-factoring equity returns. I show

that after removing the common risk factors and industry risk factors, there is still a considerable degree of

local risk spillovers via the links implied by the news. The flexible framework allows us to study the industrial

heterogeneity in terms of the intensities of the local risk spillovers. We find a substantial degree of industrial

heterogeneity. In particular, manufacturing firms and financial firms are more sensitive to the shocks of their

neighbours. It is also worth noticing that the lead-lag effect in the risk spillovers for financial firms is more

pronounced as for any lag order, the percentage of significant individual-specific spatial-temporal coefficients

are about twice as large as that of other industry groups. The spatial-temporal framework allows us to analyse

a complicated diffusion pattern of local shocks over time and space. The decay of shock along spatial dimension

is slower than that along time dimension. By constructing spatial-temporal spillover matrix using the estimated

parameters, we are able to identify the major systemic risk contributors and receivers, which are of the interest

to microprudential policy makers. The firms contribute the most to the systemic risks are the large cap financial

institutions and manufacturers. Apart from systemic risk contributors, companies that are particularly sensi-

tive to others’ shocks are also found. It is worth noticing that the well-connected systemic risk contributors

themselves are not necessarily the major risk receivers. They are the periphery firms that receive a lot of risks

from the core. To assess the performance of the proposed method and evaluate the benefits of using this novel

data, I compare the in-sample and out-of-sample mean squared error (MSE) of the spatial-temporal model

estimated using different adjacency matrices, and an alternative high-dimensional VAR approach that requires

no explicit link information from Barigozzi and Hallin (2017)[9], which we refer to as BH-VAR for short. In

terms of in-sample fit, BH-VAR has the smallest MSE. This is not surprising, given the method selects the

model by minimizing a Bayesian information criterion. However, when we look at out-of-sample fit, which is

more important practically, the spatial-temporal model estimated with the text-based network outperform all

other specifications.

To examine how the strength of local risk spillovers evolve over time, I consider a rolling window analysis.

2Table 13 shows the percentages of crisis period Long-run variance Decomposition network (LVDN) links that get identified

using alternative pre-crisis network information. Different hard thresholds are applied to the LVDN given the network implied

by LVDN is very dense (the link densities for pre-crisis and crisis sample are 77:5% and 95:3%, respectively). We do not need to

apply thresholding to text-based network since it is already very sparse (the link density of the full sample network is 4:5%, and for

the short pre-crisis sample the density is even smaller). For any non zero thresholds applied, the text-based networks consistently

outperform that of pre-crisis LVDN in terms of detecting out-of-sample links.
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The estimation results reveal that the local dependencies intensify during periods of financial crisis and turmoils.

The surge in local risk spillovers could be a signal of rising systemic risk, which is useful for macroprudential

purposes. Previous studies have documented that asset returns depart from fundamentals during times of fi-

nancial crisis, and stocks dis-connect from the market factor (Baily et al.(2019[5],2020[6])). Our analysis tracks

the evolution of strong cross-sectional dependence (CSD) and weak cross-sectional dependence (CWD) at the

same time and it documents an interesting fact: the local risk spillovers intensifies when then market factor

loses its importance during the financial crisis and turmoils, which is evidence for market decoupling.

This paper contributes to three strands of literature. The first strand of literature that it relates to is

textual analysis and its application in the financial market. In particular, how to quantify the soft informa-

tion contained in news articles. Text analysis has been a useful tool to construct novel datasets. It fills the

gaps in data availability induced by limited disclosure and slow update, thus complement traditional economic

datasets. For example, there has been an exploding number of researches on sentiment analysis (for example,

Garćia (2013)[17], Price et al. (2012)[29], among others. For a survey of textual analysis in accounting and

finance, see Loughran and Mcdonald (2016)[26]). Sentiment, unlike other traditional economic variables, is hard

to measure. Thanks to the text analysis techniques, it has become available to the hand of researchers. Similar

to the sentiment index, there has been an economic policy uncertainty index (EPU) developed by Baker et

al. (2016)[7], which is based on newspaper coverage frequency of political words. Text analysis has also been

used for link mining. Hoberg and Phillips (2016)[20] construct peer links by applying text analysis on firm 10K

Product description. Scherbina and Schlusche (2015)[31], Schwenkler and Zhang (2019)[32] both identify firm

links from business news. The second strand of literature this paper is related to is the local risk spillovers

in the equity returns. Local shocks transmit among economically-linked firms. Cohen and Frazzini (2008)[12]

found evidence of return predictability across firms linked by supply chains. Scherbina and Schlusche (2015)[31]

found that there is cross-predictability in returns between firms linked via various types of business relation-

ships. Equity returns comovement reflects both exposure to common risk factors and local risk spillovers. While

exposure to common factors gives rise to strong cross-sectional dependence (CSD), local risk spillovers represent

weak cross-sectional dependence (CWD), and the latter form of interdependence receives much less attention

compared with the former one. A key reason for the lack of empirical work is the lack of network information.

Using the text-based network, the paper documents the existence of ’excess-comovement’ in linked stocks be-

yond what is predicted by standard asset pricing models. Compared with the high-dimensional VAR approaches

which shrink, select and estimate high-dimensional network used by Barigozzi and Hallin (2017[9], 2019[8]) and

Demirer et al. (2018)[13] when there are no explicit links observed, our approach outperforms in terms of

out-of-sample fit. I also compare the performances of the spatial-temporal model estimated using alternative

publicly networks, and the text-based network outperforms both in terms of in-sample and out-of-sample mean

squared errors (MSE). Utilizing the novel dataset, the paper proposes a promising new method of addressing

local risk spillovers in the equity returns. In the end, it also contributes to the studies of the network structure

in equity market and has important implications from both microprudential and macroprudential perspectives.

The rest of the paper is organized as follows: section 2 describes the data and link identification strategy

and shows some key properties of the estimated linkages. Section 3 talks about the modeling of strong and

weak cross-sectional dependence using a factor plus spatial two-stage procedure. The main focus in on local risk
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spillovers (CWD) among linked stocks. Section 4 provides full sample estimation results and the construction

of spatial-temporal spillover matrices using estimated parameters. And this section also presents the model

comparison results. Section 5 provides a rolling window analysis and characterizes the evolution of local risk

spillovers over time. Section 6 shows the robustness check and placebo test. Section 7 gives some concluding

remarks.

2 Data and Link Identi�cation

All the stock market related data are from the Center for Research in Security Prices (CRSP). Since our econo-

metric framework requires large T for consistent estimation, I use the daily stock file. Industry classification is

based on Standard Industrial Classification (SIC) code from the CRSP/Compustat Merged database and the

modified classification criteria provided on the Kenneth French’s home page. As I will elaborate more in section

4, to obtain mean group (MG) estimates of each industry group’s parameters, one need the number of stocks

within each group to be big enough. Due to that consideration, I build the industry classification on top of FF5

industry definitions where they classify all stocks according to their SIC code into 5 broad groups: ’Consumer’,

’Health’, ’Hitech’, ’Manufacturing’ and ’Others’. For the first four categories, I keep the same definitions as

Fama and French. Since there are a large proportion of financial companies in the S&P500 universe and our

sample period covers the financial crisis, it would be interesting to separate financial firms from the ’Others’

category. Among the stocks that fall into ’Others’, I categorize the stocks with SIC in the range 6000− 6799 as

’Finance’ and make the rest of the stocks stay in the ’Others’ category. Daily Fama-French factor returns and

industry portfolios’ returns are taken from Kenneth French’s home page.

As for the text data, I download all the full-text business news from Business Wire that tagged S&P5003

companies from January 2006 to December 2013 on LexisNexis Academic4. A news contains a title, date, body

and classification. A typical business news in the dataset is in shown in Figure 5. This example news reports

the strategic partnership between American Express and Regis Corporation. The main subject of the news are

summarized by some key words. And in the classification section, the relevant companies are tagged with their

tickers listed. There are 345; 880 distinct business news that tagged sample companies during the whole sample

period, and each sample month has around 3; 200 distinct business news. This section will mainly focus on the

identification of links from our text database and some key properties of those links.

2.1 Identi�cation of Links

Common news coverage reveals information about linkages among companies. In this paper, links are identified

by common business news coverage. The identification assumption is that if a piece business news reports

two companies together, then the two firms have some sort of business relationship/link. Although news that

mention multiple companies together may carry potential information about links, they are more noisy (for

3The composition of S&P500 index changes over time. All stocks that have stayed on the list and have no missing return

observations for more than one year during the sample period are considered.
4LexisNexis Academic is a database of full text online news, legal cases and company from information. News from hundreds of

source are available. After entering the company names and narrowing down the subject to ’business news’, Business Wire is always

among the top sources list. To maximize the number of relevant business news during sample period and to avoid duplications,

only the news from Business Wire is used. The python code of data scraping is available upon request
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example, analyst recommendations, ratings changes, index movements might stack multiple companies together

when they actually don’t have real links). Due to that concern, I discard news that tag more than two firms.

I use a N × N adjacency matrix W = (wij) to store all the links identified in the sample news. N is the

number of sample companies and a typical entry wij is the number of times i and j are co-mentioned in different

news. The link estimation procedure is as follows. For each piece of distinct news in the sample, (1) firstly we

extract the tickers tagged; (2) keep the news if only two distinct5 tickers are tagged; (3) match the tagged with

sample companies; (4) if both tagged companies are successfully matched, say if the they are matched to the

companies correspond to the ith and jth row/column, then we add one to both wij and wji. Process (1)-(4) is

repeated for every piece of distinct news in the sample.

2.2 Estimated Links

The links identified using all the business news from Business Wire from 2006 to 2013 is plotted in Figure

6. Only companies with links are plotted on the figure. Given a long sample period and huge amount of

business news, very few sample companies never got co-mentioned with others6. In the figure, nodes represent

companies and two nodes are connected by an edge if there is a link between them. The size of a node is propor-

tional to the number of neighbours it has (i.e., its degree) and the color of a node indicates which industry it is in.

The estimated full sample network has a core-periphery structure. The most connected companies in the

network graph include big banks, big hitech companies and big manufactures. Big banks including JPMorgan

Chase (JPM), Citi (C), Goldman Sachs(GS) and Bank of America (BAC) and big hitech firms including Mi-

crosoft (MSFT), Apple (AAPL), Intel (INTC) and Oracle (ORCL) and big manufacturers and conglomerates

including General Electric and Procter & Gamble (PG). And they occupy the center of the graph. Table 8

provides the link validation results for the most frequently mentioned pairs. Big banks engage in a variety

of business relationships with other companies including financing, joint venture, strategic partnerships, joint

investment banking, acquisition of business lines and competition. Hitech giants are very well connected with

each other to form strategic partnerships and develop new products together. Supplier-customer relationship

and business lines acquisitions are found among Big manufacturers and conglomerates. Companies within the

same industry appear as clusters, indicating there are dense intra-industry linkages. Most of the hitech firms

lie on the third quadrant (bottom left corner) of the graph, while most of the health and consumer companies

show up in first quadrant (top left corner) of the graph. Manufacturing and financial companies companies are

more scattered.

Table 9 gives a summary statistics of the news-based links estimated using full sample. In total, 40185

5A same company listed on different stock exchanges may have different tickers. For example, Citi used to list on both the New

York Stock Exchange (NYSE) and the Tokyo Stock Exchange (TSE) at the same ticker with different ticker names: C(NYSE)

and 8710 (TSE). To avoid double counts of a same company, only tickers associated with the New York Stock Exchange (NYSE),

National Association of Securities Dealers Automated Quotation System (Nasdaq) and American Stock Exchange (AMEX) are

kept.
6For the balanced panel of 413 sample companies, only 5 out of 413 never got co-mentioned with others. There are 546 firms

that have stayed on the S&P500 list and had no missing return observations for at least a year, and they are included in the one

year rolling sample. Among 546 firms that are included in the rolling sample, only 26 of them never got co-mentioned with others.
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links are identified in the full sample period, and among them there are 6742 unique pairs of companies that

share links. The former number is much larger than the latter one since most pairs of firms are mentioned

together multiple times in different articles. The link density of the full sample network 4:5%. Those links

are discovered over time and the yearly network plotted in Figure 7 are sparser. Over the full sample period,

each company are connected to around 24 other companies in the S&P500 universe on average. The network

shows a substantial level of degree heterogeneity with a small number of firms being highly-connected, which is

shown by the 90th percentile of degree. And this feature is consistent with the core-periphery structure of most

empirical networks. To have a more detailed understanding of the features of the links, I further break down

the links to intra-industry and inter-industry links. Our method identifies a lot of inter-industry links as well

as intra-industry links. Although the full sample network is sparse, the intra-industry link densities are high.

For example, the intra-industry link density for hitech companies reaches 16%. This feature is obvious from

Figure 6, where companies within the same industry appear as clusters. Most of the hitech firms lie on the third

quadrant (bottom left corner) of the graph, while most of the health and consumer companies show up in first

quadrant (top left corner) of the graph. Manufacturing and financial companies companies, on the other hand,

are more scattered. Compared with the peer link mining method in the literature (see Hoberg and Phillips

(2016)[20], Lee, Ma and Wang (2015)[23], the method used in this paper has the advantage of discovering not

only peer links but also inter-industry links. Over the full sample, the number of distinct cross-sector pairs

identified is larger than the number of distinct intra-sector pairs identified. And this is still true even if we look

at different industries separately.

The full sample period is long and different links are identified in different years. The network graphs and

summary statistics for each year from 2006 − 2013 are given in Figure 7 and Table 10, respectively. For the

links identified using only one year’s news, the statistics are much smaller than that from Table 9. This implies

that new links get identified over time and they carry timely information about the interconnectedness among

companies. To roughly gauge the percentages of ’new’ and ’stale’ links, I calculate the percentage of linked pairs

identified in one year that were identified in the previous year. On average, 37:82% of the linked pairs identified

in a year are ’stale’ links and 62:18% are ’new’ links. However, the high percentage of ’stale’ information is not

necessarily a bad thing, as it implies the news-based links are persistent. I calculate the percentage of linked

pairs identified in one year that continue to get identified in later years. On average, 59:32% of the linked

pairs identified in a year continue to get identified in later years, showing that the method identifies long-lived

economic links among companies.

2.3 Comparison with other networks

The novel dataset complements existing network datasets in several perspectives. While existing network

datasets are usually lagged, incomplete, and cover certain types of links for certain types of firm. The link

mining method complements these information sources by identifying additional types of links that have not

been documented elsewhere. Figure 8 plots the network of S&P500 firms using Compustat data. Consumer

companies such as Walmart, McKesson are well-connected given they have a wide range of suppliers and cus-

tomers. Apart from several consumer companies, there is no apparent star in the network. Very few links of

financial firms are uncovered. On the other hand, the link mining approach applied in this paper uncovers a

huge amount of intra-industry as well as inter-industry links for financial firms.
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Instead of turning to existing limited network dataset, there has been a strand of literature using pure sta-

tistical methods to estimate links from a high-dimensional time series (Barigozzi and Hallin (2017)[9], Barigozzi

and Brownlees (2019)[8], Demirer et al. (2018)[13]). Figure 9 plots the long-run variance decomposition net-

work (LVDN), long-run Granger causality network (LGCN) and partial correlation network (PCN) among

S&P500 companies estimated from the our sample of idiosyncratic returns using the high-dimensional methods

from Barigozzi and Hallin (2017)[9]. Although we are using idiosyncratic returns while they use idiosyncratic

volatilities, two prominent features remain true. The first feature is that the Financial Crisis has blown up

the interconnectedness in the system. From figure 9, it is clear that for all 3 types of networks considered, the

network in the Crisis period is much denser than that of others7. The second feature is that the links identified

are very different from period to period. Table 13 shows the percentages of thresholded crisis period LVDN

links that also appear in the thresholded pre-crisis LVDN. Expect the results for no thresholding, where the link

densities for pre-crisis and crisis sample are 77:5% and 95:3% respectively, for other thresholds applied, very

few links from the crisis LVDN appear before the crisis. From those two features, the links that turn out to be

important for risk transmissions in the crisis period are like the hidden iceberg that is hard to detect ex-ante

and reveal themselves only when large shocks hit the system. As a result, such high-dimensional link estimation

method alone is not so useful for policymakers to monitor systemic risk. Additional sources of information,

could be fruitful in aiding the link detection. For example, if we apply 5% hard threshold to the both the

pre-crisis and crisis LVDN, then only 4% of the thresholded LVDN links identified from the crisis period were

also identified from the pre-crisis period. On the other hand, our text-based links identified from the same

pre-crisis period reveals the 34% of the thresholded LVDN links identified from the crisis. For other non-zero

thresholds, the text-based links consistently outperform that of pre-crisis LVDN. This is due to the fact that our

text-based links are much more persistent. On average, 59:32% of the linked pairs identified in a year continue

to get identified in later years, showing that the method identifies long-lived economic links among companies.

Taken together, it can be seen that the text-based network complements alternative network datasets and can

be veiw as a promising alternative to other datasets.

3 Local Risk Spillovers Among Linked Stocks

Equity returns comovement reflects both exposure to common risk factors and local risk spillovers and the

latter source of comovement receives much less attention compared with the former one. However, the models

that focus on strong cross-sectional dependence such as CAPM and ATP fail to capture all the cross-sectional

dependence in the equity returns. There are many work show that the local dependence in the idiosyncratic

component is non-negligible (Gabaix (2011)[16], Acemoglue et al.(2012)[1], Barigozzi and Hallin (2017)[9],

Kou et al. (2018)[22] among others), thus it is important to examine the role played by local interactions.

Adopting the econometrics framework in Baily, Holly and Pesaran (2016)[4], I remove the strong cross-sectional

dependence using a factor approach and then use spatial models to examine the local risk spillovers (weak cross-

sectional dependence) remaining in the idiosyncratic returns. Unlike spatial interactions in the geographical

7Table 11 shows the number of links from the thresholded LVDN for pre-crisis, crisis and full sample periods (different thresholds

applied). Table 11 shows the number of links from the LGCN and PCN forpre-crisis, crisis and full sample periods

8



systems, where there exist natural network structure, for a panel of equity returns there is no natural network

structure. The text analysis approach in this paper helps to identity the business links among listed firms and

thus allows us to construct the channels of which local shocks transmit. It is found that there is significant local

dependence among linked firms’ idiosyncratic returns.

3.1 De-factoring Equity Returns

To disentangle weakly correlated idiosyncratic return from the strongly correlated returns driven by pervasive

factors, one could use factor models. To be specific, I apply the below hierachical factor model:

rit − rft = �i + b0ift + 0ifg;t + �it (1)

where rit denote the return of stock i at time t and subtracting risk free rate rft gives the excess return. ft

is the K1 vector of common risk factors that affect every stock in the market. Since a large proportion of the

links identified are intra-industry links, to avoid suprious found spillovers that are actually caused by industry

common factors, we add the K2 industry risk factor fgt that affect members of industry g but not others. bi and

iare the loadings of common risk factors and industry risk factors, respectively. For the choice of factors, we can

either use observed factors like Fama-French factors or statistical factors extracted using principal component

analysis.

Our analysis need the number of members to be large within each industry group g, so we consider 6 broad

industry categories that I will elaborate in details next. For the choice of ft, I consider 5 factors proposed by

Fama-French (2015)[15] plus the momentum factor. And as for the industry factors fg;t, I use the within group

cross-sectional averages. As an alternative to observed market and industry factors, one could use unobserved

factors, and I will use it as a robustness check.

3.2 Local Risk Spillovers: a Heterogeneous Coe�cient Spatial-temporal Model

3.2.1 Heterogeneous Coe�cient Spatial-temporal Model

After removing the strongly pervasive component driven by common risk factors, the cross-sectional depen-

dence in the remaining part is weak (local). Spatial econometrics methods are natural tools to address the weak

(local) cross-sectional dependence in the idiosyncratic component, where entities interact locally. Conventional

homogeneous spatial models restrict the spatial response parameter to be the same across all units. While such

restriction is necessary for small T panels, it need not to be imposed when T is large. For a panel data set with

sufficiently large T , one can exploit the data along the time dimension to estimate individual-specific parameters

for all N units.

One might reasonably suspect that the sensitivity to neighbours’ risks is different from firm to firm. Since

stock market data set usually covers long time period, we can utilize this nice feature to explore the hetero-

geneity in the strength of local dependency. The local risk spillovers in the idiosyncratic component is modelled

using a heterogeneous coefficient spatial-temporal model ((Bailey et.al 2016[4], LeSage and Chih 2016[25] and

Aquaro et.al 2019[2]) that written as follows:
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�t = a� +

L1X
k=1

�k�t�k| {z }
temporal dependence

+

L2X
k=0

	kW�t�k| {z }
spatial temporal dependence

+�t (2)

where �t is the N × 1 de-factored returns and a� = (��;1; : : : ; ��;N ) is the N × 1 vector of intercepts. �k =

diag(�k;1; : : : ; �k;N ) is autoregressive parameters of the kth lag for k = 1; : : : ; L1, 	0 = diag( 0;1; : : : ;  0;N ) is

the contemporaneous spatial coefficients and Ψk = diag( k;1; : : : ;  k;N ) is the spatial-temporal parameters of the

of the kth lag for k = 1; : : : ; L2. Notice that for the individual specific spatial coefficients  i = ( 0;i; : : : ;  L2;i)
0

to be identifiable, company i has to have non-zero number of neighbours. For unconnected i, we need to restrict

their spatial related coefficients  i = 0. The error variance ��2 = var(�it) are allowed to differ for differnt i.

W is the N × N adjacency matrix that specifies the channels from which shocks transmits. As a convention

in spatial econometrics, the diagonal elements are set to zero (wii = 0 for all i = 1; : : : ; N), all other entries

are assumed to be non-negative (wij >= 0) and the weights are row-normalized so that
PN
j wij = 1 for all

i = 1; : : : ; N .

The model can be consistently estimated using the QML procedure proposed in Bailey et.al 2016[4] and

Aquaro et.al 2019[2]. We collect all the parameters in theN∗(L1+L2+3) by 1 vector � = (a�
0;�01; : : : ;�L1 ;	

0
0; : : : ;	L2 ;�

0
�2

and the log-likelihood function of (2) is written as follows:

LT (�) = −NT
2
ln(2�)− T

2

NX
i

ln(�2
i )+

T

2
ln | S0( 0)S( 0) | −1

2

TX
t=1

[S( 0)yt−Bxt]0Σ�1[S( 0)yt−Bxt] (3)

where S( 0) = IN −	0W , yt = (y1t; : : : ; yNt). We stack the constant and all weakly exogeneous variables for i

at t in xit = (1; �i;t�1; : : : ; �i;t�L1 ;W�i;t�1; : : : ;W�i;t�L2) and xt = (x01t; : : : ; x
0
Nt)
0 is the (1+L1+L2)N by 1 vec-

tor. B is the N by (1+L1 +L2)N block diagonal matrix with elements �0i = (a�i ; �1;i; : : : ; �L1;i;  1;i; : : : ;  L2;i)
0

on the main diagonal and zeros elsewhere. Finally, V ar(�) = Σ.

The quasi maximum likelihood estimator �̂QMLE maximizes (3). The error terms need not to be Gaussian,

but when it is, �̂QMLE is the maximum likelihood estimator of �. For further details of computationally cheaper

estimation procedure and inference, one could read Aquaro et.al 2019[2].

3.2.2 Spatial-temporal Responses to Local Risk

The spatial-temporal framework allows us to analyse a complicated diffusion pattern of local shocks over time

and space. The parameter estimates of equation (2) only shows a part of the picture. To fully understand how

�i;t, a local shock arising from firm i at time t affects �j;t+h, one need to trace the time profile of shocks over

time and space. To examine the dependence across time and space implied by (2), we first rewrite it in a vector

autoregression (VAR) form that we are familiar with:

�t =

maxfL1;L2gX
�=1

Φ��t−� +R�t (4)

where R = (IN − Ψ0W )�1, Φ� = RΛ� + RΨ�W and the lag order depends on the maximum of AR lag order

and spatial-temporal lag order. Under the assumptions that E(et) = 0; E(�t�t
0) = Σ� = {�ij ; i; j = 1; : : : ; N},
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which is a positive definite matrix, E(�t��
0) = 0 for t 6= � , and the stability of the process, the VAR can be as

a vector moving average (VMA) process,

�t =

1X
p=1

Ap�t�p for t = 1; : : : ; T (5)

where �t = R�t and Ap can be obtained recursively by

Ap = Φ1Ap�1 + Φ2Ap�2 + · · ·+ ΦmAp�m (6)

where m = max{L1; L2} and A0 = IN . Given that � = (�1; : : : ; �N ) is a hypothetical primitive shock hitting

the economy at t, the generalized impulse response function (Pesaran and Shin 1996[27], Koop et al. 1996[21])

at horizon h is written as

GI(h; �;Ωt�1) = E(�t+h | �t = �;Ωt�1)− E(�t+h | Ωt�1) = AhR� (7)

The primitive idiosyncratic shock �t is allowed to be correlated. To look at the effect of a shock to one firm’s

(say the kth firm) effect on the whole system, we integrate out the effects of all other primitive shocks using the

historically observed distribution of �t. The generalized impulse response function of the effect of a primitive

shock to firm k at time t on the system h period in the future is given by

GI(h; �k;Ωt�1) = E(�t+h | �k;t = �k;Ωt�1)− E(�t+h | Ωt�1) = �kAhR(
Σ�ek
�kk

) (8)

where ek is a N × 1 selection vector with 1 as its kth element and zeros elsewhere. ��ek
�kk

is the adjust-

ment due to potentially correlated primitive shocks �t. When Σ� is a diagnoal matrix, ��ek
�kk

= ek, and

GI(h; �k;Ωt�1) = �kAhRek.

4 Full Sample Estimation

In this section, I estimate the local risk spillovers in the weakly correlated idiosyncratic returns using the

heterogeneous spatial-temporal model (2) discussed above. Using the estimated parameters, then I compute

the spatial-temporal responses and construct the spatial-temporal spillover matrix Dh for each horizon h. Based

on the spatial-temporal spillover matrices, we are able to find important systemic risk contributors and receivers.

In the end, to assess the performance of the proposed method, I compare the in-sample and out-of-sample mean

squared error (MSE) of the spatial-temporal model (2) estimated using alternative W and the high-dimensional

vector autoregressive (VAR) model from Barigozzi and Hallin (2017).

4.1 De-factored (Idiosyncratic) Returns

Our full sample spans from 03=01=2006 to 31=12=2013 (T = 2014 days). To obtain a balanced panel, we end

up with N = 413 stocks. We first estimate the hierachical factor model (1) by running time series regression

for each company i = 1; : : : ; N . I consider 5 factors proposed by Fama-French (2015)[15] plus the momentum

factor. And as for the industry factors fg;t, I use the Fama-French 5 industry porfolios. To make sure the

number of members is large within each industry group g (for the construction of industry factors and the con-

sistency of industrial mean group (MG) estimator, which we will elaborate more in later section), we consider 6
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broad industry categories. The industry classification is built on top of Fama and French 5 industry portfolios

where they classify all stocks into 5 groups ’Consumer’, ’Health’, ’Hitech’, ’Manufacturing’ and ’Others’ based

on Standard Industrial Classification (SIC) code. For the first four categories, I keep the same definitions as

Fama and French. To address the importance of financial sectors, I categorize the companies with SIC code in

the range 6000 − 6799 as ’Finance’. For the firms previously in the ’Others’ group with SIC code outside this

range, I keep them in the ’Others’ group. The SIC code is sourced from Compustat8. Statistical factor model

(the hierarchical PCA) is used as a robustness check.

Table 1 summarizes the share of variance explained by the factors (regression R2) for N cross sections. The

R2 varies from 13:2% to as high as 77:2%. On average, these factors explain 49:1% of the variation of the excess

returns of S&P500 stocks and the R2 is higher than 40% for three-fourths of the stocks.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Hierarchical factor model 0.132 0.401 0.498 0.491 0.586 0.772

Table 1: Summary statistics for corss-sectional regression R2 for the hierarchical factor model

The de-factored (idiosyncratic) returns can be obtained by estimating the above factor model (1) and

collecting the residuals �̂it. Below I list some stylized features of the de-factored returns, which motivates our

choice of the spatial-temporal modelling approach. First of all, �̂it is serially correlated for around half of the

sample S&P500 stocks. Table 2 shows the summary statistics of the Qm statistics of the Ljung-Box test and the

corresponding P -value for the sample stocks. our lag orders are considered. m = 1; 5; 10; 22 corresponds to the

number of trading days in a day, a week, two weeks and a month, respectively. If we consider the significance

level � = 0:05, then we reject the hypothesis of white noise for half of the stocks in the sample for all the three

lag orders except m = 1, as the P -value for the median is smaller than 0:05 for m = 5; 10; 22. This results shows

that there are predictability in terms of estimated idiosyncratic returns. However, examining the estimates of

the correlation coefficients (I will not report here) shows that correlations are in general very small economically,

rendering the predictability unprofitable given the trading cost.

8Guenther and Rosman(1994) and Kahle and Walkling(1996) found that the two-digit SIC codes between CRSP data and

Compustat differ on average 38% of the time, and using Compustat SIC codes yields higher returns.
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Min. 1st Qu. Median Mean 3rd Qu. Max.

m=1
Qm 0.001 0.451 2.512 5.806 6.050 104.088

P -value 0.000 0.014 0.113 0.272 0.502 0.985

m=5
Qm 1.000 6.501 11.183 15.864 18.014 130.446

P -value 0.000 0.003 0.048 0.174 0.260 0.962

m=10
Qm 2.951 13.122 19.308 25.598 27.570 189.538

P -value 0.000 0.002 0.037 0.151 0.217 0.983

m=22
Qm 11.48 28.19 37.67 47.81 52.30 273.00

P -value 0.000 0.000 0.019 0.126 0.169 0.967

Table 2: Summary statistics of the Qm statistics of the Ljung-Box test and the corresponding P -value for the

sample stocks. Note: m is the lag order of the test. Qm = T (T − 1)
∑m

j=1
1

T−j
�̂j

2 ∼ �2
m.

To choose the lag order L1 for the autoregressive term, one could apply information criterion such as Akaike

information criterion (AIC), Bayesian information criterion (BIC), etc. In this paper, since the estimation of a

large heterogeneous spatial temporal model is time consuming, and applying model selection techniques on the

full model (2) would be theoretically possible but computationally burdensome. Thus, I pre-select the lag order

L1 of the model by examining the maximum number of lags included in the autoregressive (AR) model for each

individual stock. I select the optimal number of autoregressive lags for each stock i using BIC criterion since

AIC criterion usually selects a bigger model than BIC, and we hope to keep the model parsimonious given that

the number of parameters need to be estimated 9 is N ∗ (L1 + L2 + 3). Among all sample stocks, 95% of them

have optimal lag order smaller or equal to 5, and according to that, I pre-specify L1 = 5, that is, the number of

trading days in a week. The spatial temporal part is specified to have the same lag order L2 = 5, and according

to the estimation results they are sufficient to capture the spatial-temporal relationships.

In addition to the temporal correlation, the cross-sectional dependencies in the idiosyncratic returns are of

major interest. The defactoring process removes the strong cross sectional dependence by reduceing the average

pairwise correlation coefficient from as large as ˆ̄�N = 2
N(N�1)

PN
i=1

PN
j=i+1 �̂ij to as small as ˆ̄�N;r = 0:4308

to ˆ̄�N;� = 0:008. Then I go on to test the null of cross-sectionally uncorrelated idiosyncratic returns H0 =

E(�it; �jt) = 0 for all t and i 6= j. I compute a scaled version of the Breusch and Pagan (1980)[10] LM test

statistics, which has asymptotically standard normal distribution when N and T are both large.

CDLM =

s
1

N(N − 1)

N�1X
i=1

NX
j=i+1

(T �̂2
ij − 1) (9)

Using �̂it estimated from equation (1), CDLM = 1653:40, which strongly reject the null that idiosyncratic

returns are cross-sectionally uncorrelated. Consistent with arbitrage pricing theory (APT), the interconnect-

edness in stock idiosyncratic returns, although being weak, is non-negligible and needs to be accounted for.

Spatial models are natural tools for addressing local dependencies among neighbouring units, and with the

novel business links constructed using text analysis, we can model the channel from which local risks transmits

and quantity its strength.

9For each i, there are L1 AR parameters, (L2 + 1) spatial temporal parameters, 1 intercept parameter and 1 scale parameter.
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4.2 Adjacency Matrix

For the full sample estimation, W contains all the links that are identified within the sample period. Here is how

we calculate W : (1) we firstly add up all the monthly observed adjacency matrix W1 + · · ·+Wt+ · · ·+WT to get

a non-normalized adjacency matrix Wraw. Given there are Tm months in the sample, for the t th (1 ≤ t ≤ Tm)

month the sample, Wt = (wij;t) with wij;t being a 1=0 dummy indicating whether company i and j are co-

mentioned in the news published in this month. (2) we row-normalize Wraw and get W , as a convention in

spatial econometrics. Notice that Wt is a unweighted adjacency matrix, while on the other hand W is weighted.

This is because news tend to report the development of one issue for consecutive days and we may thus observe

two companies get co-mentioned several times within that period. This ’multiple co-mentions within a short

period of time’ does not imply the relationship between two companies is stronger. However, if two companies

get co-mentioned consistently in different monthly windows, there is reason to believe their links are stronger

or the public are more aware/pay more attention to their links. That is why we add up unweighted monthly

Wt and then apply row normalization to get weighted W . Alternative specifications of adjacency matrix are

considered in later sections.

4.3 Spatial-temporal Model Estimation Results

4.3.1 Parameter Estimates

Equation (2) is estimated using quasi maximum likelihood (QML) and it is assumed that eit ∼ IID(0; �2
i ), for

i = 1; : : : ; N . Since it is a heterogeneous coefficient model, we can only identify the spatial coefficients of those

units with at least one link given T is large enough. We need to restrict the spatial parameters of the companies

without any links to be zero. If we apply the full sample adjacency matrix W discussed above, only 5 out of

N = 413 companies don’t have any links.

Given the huge amount of parameters in the model, here I only report some summary statistics of the

estimates in Table 3. Full estimation results can be requested from the author. Given a heterogeneous coefficient

panel model, what is often of the interest to empirical researchers is the average estimates across all entities (or

all entities within a sub-group). Assuming individual specific coefficients are randomly distributed around their

common means as follows:

�k1;i = �k1;0 + �k1;i;  k2;i =  k2;0 + &k2;i for k1 = 1, . . . , L1, k2 = 1, . . . , L2 and i = 1, . . . , N (10)

The common mean parameters �k1;0 and  k2;0 for k1 = 1; : : : ; L1, k2 = 1; : : : ; L2 are the the objects of interest

and they can be consistently10 estimated with the following mean group (MG) estimator given N and T are

large enough. The mean group (MG) estimates are provided in Table 3 with standard errors in the parenthesis.

�̂MG
k1;0 =

1

N

NX
i=1

�̂k1;i and  ̂MG
k2;0 =

1

N

NX
i=1

 ̂k2;i (11)

10see Pesaran and Smith (1995)[28] for proofs the consistency when individual specific coefficients are independently distributed

and the recent development by Chudik and Pesaran (2019)[11] who prove the consistency under weakly correlated individual specific

estimators. In both cases, T and N are required to be big enough. Intuitively, big T is required for the consistent estimation of

individual specific coefficients and N needs to be big enough for the consistent estimation of the means. To see how the MG

estimators behave in the context of heterogeneous spatial-temporal model, see Aquaro (2019)[2].
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(1)AR terms (2) spatial-temporal terms (3) �

�1 �2 �3 �4 �5  0  1  2  3  4  5 �

Median -0.028 -0.012 -0.013 -0.008 -0.004 0.275 0.026 0.011 -0.005 0.009 0.005 1.426

MG estimates -0.027 -0.013 -0.015 -0.010 -0.006 0.307 0.037 0.009 -0.008 0.008 0.011 1.517

( 0.002) ( 0.002) ( 0.002) ( 0.002) ( 0.002) ( 0.021) ( 0.007) ( 0.006) ( 0.005) ( 0.005) ( 0.006) ( 0.027)

% sig (at 5%) 39.7% 23.0% 19.9% 19.1% 19.6% 81.4% 21.6% 20.3% 16.2% 17.2% 14.7% -

non-zero coef. 413 413 413 413 413 408 408 408 408 408 408 413

Table 3: QML estimation results of heterogeneous spatial-temporal model (2) using full sample.

Note: The median and mean group (MG) estimates are computed using unrestricted parameters only. The standard error of

the MG estimates are in the parenthesis. The second last row show the percentage of significant parameters at 5% out of the

unrestricted parameters and the last row of the table shows the number of unrestricted entities out of N. Panel (1), (2), (3) report

the results of autoregressive parameters, spatial-temporal parameters and standard deviation of error, respectively.

From Table 3, we can see that the mean group (MG) estimates of contemporaneous spatial coefficients ( 0;0) and

the first spatial-temporal coefficents ( 1;0) are both highly significant at the 5% level. And  ̂MG
0 = 0:307(0:021)

shows the strength of local dependence is big. Some general conclusions can be drawn here. After removing the

common risk factors and industry risk factors, there is still a considerable degree of local spatial-temporal risk

spillover among S&P500 firms.

It is reasonable to suspect that the sensitivities to local risk spillovers are different for different industry

groups. Given that the consistency of mean group (MG) estimator requires large N, one consideration when

doing industry classification is that the number of members of each industry group need to be sufficiently

big. Thus I adopt broad the industry classification scheme described in section 4.1, which guarantees large N

condition to be satisfied for each industry group. Table 4 presents the estimation results grouped by indus-

try and it reveals the considerable level of heterogeneity among different industry groups. In particular, the

size of mean contemporaneous spatial effect ( 0;0) for manufacturing firms is largest, with the MG estimates

 ̂MG
0;manufacturing;0 = 0:446(0:033). Manufacturing firms are highly connected with other firms via supplier-

customer linkages, and it is well documented (see Cohen and Frazzini (2008)[12]) that any shock to one firm

has sizeable effect on its linked partner along the supply chain. Financial firms are also exposed to quite large

mean contemporaneous spatial effect with the MG estimates  ̂MG
0;finance;0 = 0:345(0:039). Apart from the large

contemporaneous spatial coefficient, it is also worth noticing that the lead-lag effect in the risk spillovers for the

financial firms is more pronounced as the the percentage of significant spatial-temporal coefficients  ̂k2;finance;i

is about twice as large as that of other industry groups for any lag order k2 = 1; : : : ; 5. We need to inter-

pret the mean group estimates of these spatial-temporal parameters with care. The individual parameters

 ̂k2;finance;i are quite dispersed, with some firms having significantly positive spatial temporal terms and some

having significantly negative ones. That is why the mean group estimates  ̂k2;finance;0 don’t look very signifi-

cant although individually they are pretty significant —there are too much heterogeneity! Firms from consumer

industry and hitech industry are also significantly exposed to their economic neighbours’ local risks, although

with slightly smaller sensitivities. Health firms are least sensitive to shocks elsewhere and the mean group

estimate  ̂MG
0;health;0 = 0:061(0:061) is not statistically significant. However, we should interpret that result with

care since the number of companies from health industry is relatively small thus the mean group estimate is

likely to be imprecise.
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(1)AR terms (2) spatial-temporal terms (3) �

�1 �2 �3 �4 �5  0  1  2  3  4  5 �

Panel A: Consumer

Median -0.020 -0.015 -0.009 -0.009 -0.008 0.236 0.035 0.013 -0.004 0.001 0.001 1.373

MG Estimates -0.025 -0.015 -0.011 -0.012 -0.008 0.232 0.033 0.026 -0.001 -0.002 0.005 1.456

( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003) ( 0.039) ( 0.009) ( 0.011) ( 0.010) ( 0.010) ( 0.012) ( 0.054)

% Sig(at 5%) 29.9% 15.6% 16.9% 18.2% 18.2% 79.2% 15.6% 11.7% 14.3% 11.7% 7.8% -

Non-zero coef. 77 77 77 77 77 77 77 77 77 77 77 77

Panel B: Finance

Median -0.037 -0.013 -0.017 -0.014 -0.005 0.350 0.017 0.000 -0.018 0.001 0.033 1.616

MG Estimates -0.039 -0.020 -0.021 -0.024 -0.005 0.345 0.056 -0.010 -0.018 0.023 0.050 1.785

( 0.008) ( 0.006) ( 0.005) ( 0.005) ( 0.005) ( 0.057) ( 0.026) ( 0.019) ( 0.020) ( 0.017) ( 0.017) ( 0.073)

% Sig(at 5%) 57.3% 38.7% 36.0% 32.0% 33.3% 82.7% 32.0% 34.7% 30.7% 30.7% 29.7% -

Non-zero coef. 75 75 75 75 75 74 74 74 74 74 74 75

Panel C: Health

Median -0.007 -0.010 -0.004 0.001 0.008 0.119 0.024 -0.004 0.014 0.027 0.004 1.368

MG Estimates -0.014 -0.005 -0.010 -0.005 0.006 0.061 0.020 0.001 -0.001 0.029 0.041 1.479

( 0.006) ( 0.005) ( 0.005) ( 0.005) ( 0.004) ( 0.061) ( 0.016) ( 0.015) ( 0.013) ( 0.016) ( 0.020) ( 0.105)

% Sig(at 5%) 25.7% 20.0% 14.3% 14.3% 8.6% 68.6% 14.3% 11.4% 8.6% 5.7% 14.7% -

Non-zero coef. 35 35 35 35 35 34 34 34 34 34 34 35

Panel D: Hitech

Median -0.036 -0.019 -0.014 -0.009 -0.004 0.212 0.016 -0.004 0.006 0.009 -0.013 1.459

MG Estimates -0.032 -0.018 -0.012 -0.010 -0.007 0.229 0.018 -0.004 -0.001 0.004 -0.014 1.576

( 0.005) ( 0.003) ( 0.003) ( 0.003) ( 0.003) ( 0.048) ( 0.011) ( 0.013) ( 0.009) ( 0.010) ( 0.014) ( 0.062)

% Sig(at 5%) 49.3% 19.2% 8.2% 13.7% 16.4% 72.6% 11.0% 13.7% 6.8% 12.3% 11.0% -

Non-zero coef. 73 73 73 73 73 73 73 73 73 73 73 73

Panel E: Manufacturing

Median -0.011 -0.004 -0.018 -0.001 -0.005 0.468 0.022 0.028 -0.011 0.000 0.005 1.249

MG Estimates -0.019 -0.005 -0.017 -0.002 -0.010 0.446 0.032 0.018 -0.008 0.004 0.005 1.303

( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003) ( 0.033) ( 0.009) ( 0.008) ( 0.008) ( 0.007) ( 0.007) ( 0.041)

% Sig(at 5%) 30.0% 20.9% 17.3% 20.9% 20.0% 85.5% 18.2% 18.2% 13.6% 16.4% 13.0% -

Non-zero coef. 110 110 110 110 110 108 108 108 108 108 108 110

Panel F: Other

Median -0.036 -0.015 -0.013 -0.007 -0.002 0.227 0.045 -0.017 -0.005 0.013 -0.017 1.488

MG Estimates -0.031 -0.016 -0.020 -0.007 -0.001 0.315 0.072 0.010 -0.019 -0.002 -0.007 1.635

( 0.007) ( 0.005) ( 0.005) ( 0.004) ( 0.004) ( 0.075) ( 0.024) ( 0.019) ( 0.016) ( 0.017) ( 0.017) ( 0.083)

% Sig(at 5%) 46.5% 23.3% 27.9% 7.0% 11.6% 76.7% 32.6% 20.9% 9.3% 9.3% 11.9% -

Non-zero coef. 43 43 43 43 43 42 42 42 42 42 42 43

Table 4: QML estimation results of heterogeneous spatial-temporal model (2) using full sample,

parameters summarized by industry.

4.3.2 Spatial-temporal Responses to Local Shocks

For any horizon h, we can summarize the own response and cross-response implied by equation (8) in a similar

way as how Lesage and Pace (2009)[24] and LeSage and Chih (2016)[25] summarize direct and indirect partial

effects of a change in the kth explanatory variable. For illustration, consider a simple example where Σ� is

diagonal, and firm k receives a unit shock at time t, equation (8) can be simplified as GI(h; �k = 1;Ωt�1) =

AhRek. AhR is a N × N matrix with N own responses and N(N − 1) cross-responses at horizon h on the

diagonal and off-diagonal, respectively. For h = 0; A0 = IN ,

AhR = R = (IN −Ψ0W )�1 = IN + Ψ0W + Ψ2
0W

2 + Ψ3
0W

3 + : : : (12)

R is an infinite series expansion that adds the own effect IN , first order neighbour effect Ψ0W , second order

neighbour effect Ψ2
0W

2 and so on. Ψ0 is a diagonal matrix that every entry is upper-bounded by 1 in absolute

value, so that higher powers of Ψ0 assigns smaller impact to higher order neighbours. The main diagonal ele-

ments of R gives the own responses to a unit shock, which is in general different from 1 since they are the sums

of own effects and feed backs from others. The off-diagonal elements of R, on the other hand, are the sums

of neighbour effect of different orders. For h >= 1; AhR gives the combination effects spatial dependence and

temporal dependence. In general, when Σ� is not diagonal, we need to adjust for correlated �t using equation (8).
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For each horizon h, I compute the N × 1 vector GI(h; �k = 1;Ωt�1) for each k = 1; : : : ; N using the esti-

mated parameters. For the diagonal matrices Λk; k = 1; : : : ; 5, the i’s diagonal element is �k;i if it is statistically

significant at 5% level, otherwise it is replaced by zero. The same is true for the construction of Ψk; k = 1; : : : ; 5.

We denote the spatial-temporal spillover matrix at h as Dh, where GI(h; �k = 1;Ωt�1) is the kth column of it.

Dh = [dhij ] gives the pairwise directional spillovers at horizon h.

Since N is large in our analysis, it is infeasible to report spillovers at pairwise level, I adopt the scalar

summary measure used in Lesage and Pace (2009)[24] and LeSage and Chih (2016)[25]. For each horizon h, I

derive individual level own response, which is the diagonal elements of Dh. As for the individual level indirect

effect, two measures are used, which are in-degree (Chin) and out-degree(Chout). They are defined as follows:

Chi;in =

NX
j 6=i

dhij (13)

Chj;out =

NX
i 6=j

dhij (14)

The in-degree measures the shocks a firm receives from other firms, and the out-degree, on the other hand,

measures the shocks a firm spreads to others.

Figure 1 plots the histogram for own response, in-degree and out-degree at horizon h = 0; 1. The figures for

further horizon are at the Figure 10. The two sub-figures at the first row correspond to the contemporaneous

responds. When a firm receives one unit primitive shock at t, its contemporaneous own response it not necessarily

1 as the result of the complicated feedback relationships. There are stark differences between two indirect effect

measures if we compare the two graphs on the second row with the two graphs on the third row. For h = 0,

while there are a non-negligible proportion of firms respond negatively to neighbours’ shocks, almost all firms

are positive spreader of risks (in graph (e), there is only a tiny bin with negative out-degree). Also, it is worth

noticing that the out-degree has heavy right tail, with some companies contributing a lot of risk to the system.

The right column with h >= 1 corresponds to the dynamic responses, which combine the effects of both temporal

and spatial dependencies. From Table 3 and Table 4, we can see the estimates of dynamic parameters (both

the pure temporal and the spatial-temporal) are small relative to the contemporaneous spatial effect parameter,

and this is reflected in Figure 1. Local shocks travel over time and space with decays. One interesting feature

is that the decay along the spatial dimension is slower than that along the time dimension. Notice that the

current analysis focus on how a unit shock to one firm affects the system, and that explains why the shocks die

out quickly. This does contradict with financial crisis scenario where a larger number of firms receive negative

shock jointly, which could result in a much slower shock decay.

17



(a) Own response (h = 0) (b) Own response (h = 1)

(c) In-degree (h = 0) (d) In-degree (h = 1)

(e) Out-degree (h = 0) (f) Out-degree (h = 1)

Figure 1: Histogram for own response, in-degree and out-degree at horizon h = 0; 1.

Firms with high in-degree are vulnerable as they are particularly sensitive to shocks elsewhere and firms

with high out-degree are dangerous since their ’own’ primitive shocks are widespread. Therefore, it is of interest

from a microprudential (firm-specific) perspective to identify these two types of firms. Table 5 shows the 20

firms with highest in-degree and out-degree for h = 0; 1. Higher order results are not shown in the main text

since the shocks decay along time dimension quickly. The firms contribute the most to the systemic risks are

the large cap financial institutions and manufacturers, and the findings are highly in line with the systemic

risk contributors found in others including Hautsch et al. (2015)[19], Barigozzi and Hallin (2017)[9]. Apart

from systemic risk contributors, companies that are particularly sensitive to others’ shocks are also found. It is

worth noticing that the well-connected systemic risk contributors themselves are not necessarily the major risk
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receivers. They are the periphery firms that receive a lot of risks from the core.

Company Ticker

h=0
In-degree LEN, DUK, EIX, PCG, GD, RTN, STI, ETR, NOC, RIG, HBAN,

DHI, CVX, CI, LRCX, CSX, SO, UNH, APA, VLO, FITB

Out-degree GE, JPM, MSFT, C, GS, BAC, WFC, PG, XOM, BA,

LMT, DUK, INTC, CVX, KO, HPQ, EXC, COP, BK, ORCL

h=1
In-degree GNW, HBAN, AIG, GE, CI, WY, COF, C, STT, LNC,

GT, ATI, TIF, HUM, PG, PBI, JPM, UNH, PRU, SWKS

Out-degree BAC, C, JPM, GS, GE, MSFT, APPL, DUK, BK, USB,

INTC, PFE, JNJ, UNH, LNC, VZ, BA, AET, LM, FITB

Table 5: The 20 firms with highest in-degree and out-degree for h = 0; 1. Note: For h = 1, we rank the firms according

to their absolute values of the in-degree and out-degree, given the individual spatial-temporal coefficients are very dispersed with

some having significantly positive coefficients and having significantly negative ones.

4.4 Comparison with Alternative methods

To assess the performance, I compare the in-sample and out-of-sample mean squared error (MSE) of the spatial-

temporal model (2) estimated using different adjacency matrixW and the high-dimensional vector autoregressive

(VAR) model from Barigozzi and Hallin (2017). The first column is the benchmark Naive estimator where

the predicted de-factored returns are zero all the time. The second column present the results of the high-

dimensional vector autoregressive (VAR) model from Barigozzi and Hallin (2017), and we refer it as BH-VAR

for short. Column three to column six present the results of the spatial-temporal model (2) estimated using

4 alternative adjacency matrices W . The first candidate W is the empty adjacency matrix where there is no

links. The second candidate W is the industry network where within each industry, companies are completely

connected, and there are no inter-industry links. The third candidate W is the compustat customer-supplier

network. The fourth W is the news-based networks. The spatial-temporal model (2) allows cross-sections to

have heterogeneous coefficients. While the highly flexible model promises better in-sample fit, some might

suspect the model does not guarantee a better out of sample fit as a result of potential over-fitting. To examine

the above issue, for each candidate W , I compute the in-sample and out-of-sample MSE using three alternative

specifications, given by row (1)-(3) of each panel. The results of the Naive estimator and BH-VAR are shown

in the row (4) of each panel. The training sample spans from 03=01=2006 to 31=12=2013 (2014 days) and the

testing sample spans from 03=01=2014 to 31=12=2014 (252 days).
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Naive BH-VAR Wempty Windustry Wcompustat Wnews

In Sample MSE

(1)Heterogeneous coef - - 2.785 2.759 2.783 2.685

(2)Industrial-heterogeneous coef - - 2.806 2.768 2.806 2.764

(3)Homogeneous coef - - 2.804 2.771 2.804 2.766

(4) 2.812 2.146 - - - -

Out-of-Sample MSE

(1)Heterogeneous coef - - 1.331 1.322 1.330 1.277

(2)Industrial-heterogeneous coef - - 1.326 1.308 1.326 1.290

(3)Homogeneous coef - - 1.327 1.312 1.327 1.298

(4) 1.326 1.397 - - - -

Table 6: In-sample and out-of-sample MSE (in basis point) of alternative models. Note: for each panel, the best 3

(smallest MSE) cases are in bold.

In terms of in-sample fit, BH-VAR has the smallest MSE. This is not surprising, given the method selects the

model by minimizing a Bayesian information criterion. The heterogeneous coefficient spatial-temporal model

with news-based network and industry network rank second and third, respectively. However, when we look at

out-of-sample fit, BH-VAR loses its advantage with its MSE being even larger than that of the Naive predictor.

The spatial-temporal model with news-based network, under any three parameter heterogeneity assumption,

outperforms the rest of the specifications.

The strength of local risk spillovers via news-based linkages exhibits high level of heterogeneity. As a result,

the heterogeneous coefficient specification improves not only in-sample fit but also out-of-sample fit. Although

the spatial-temporal model with news-based network underperforms BH-VAR model in term of in-sample fit,

but it beats BH-VAR when we compare out-of-sample fit, which is more important practically. It is also worth

noticing that Wnews beats all other alternative W s in terms of both in-sample and out-of-sample fit. The out-

performance of the news-based network over compustat customer-supplier network and the industrial network

reflects the novel information reflects the additional information contained in the novel dataset.

5 Dynamic Estimation

Equity returns comovement reflects both strong and weak cross-sectional dependence. It has been documented

that asset returns depart from fundamentals during times of financial crisis and stocks dis-connect from the

market factor (see Baily et al. (2019[5], 2020[6])). Our two stage factor plus spatial approach captures both

sources of co-movement separately and thus provides an avenue to examine how weak cross-sectional dependence

evolve over time. In this section, I consider a rolling window analysis with 251-day (the average number of trading

days in a year) rolling sample from 03=01=2006 to 31=12=2013. In total, there are 1761 windows.
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5.1 Time Evolution of Weak Cross-sectional Dependence

The composition of S&P500 index changes periodically in response to acquisitions and the growth or shrinkage

of company values. We update the list of sample companies on a yearly basis and include the securities that

stay in the S&P500 list and have no missing observations for that year. On average, there are 447 stocks on

the list for each update. Then we use a rolling estimation with a 251-day window to gauge the time variations

in local dependencies. For estimation window [t; t+ 251], we conduct the two-stage procedure, and Wt used for

the estimation of spatial-temporal model is constructed using all the news published one year during the year.

In the end, 1761 sets of estimates are obtained.

Figure 2 plot  ̂MG
0;t , the 251-day rolling mean group estimates of the the contemporaneous spatial parameter.

For the window [t−125; t+126], the mean group estimate of the contemporaneous spatial parameter is calculated

as  ̂MG
0;t = 1

N

PN
i=1  ̂0;i;t. 1761 rolling samples from 03=01=2006 to 31=12=2013 give rise to 1761 sets of estimates

from 30=06=2006 to 01=07=2013. The figure reveals the increase in the intensities of local dependencies during

times of financial turmoils.  ̂MG
0;t was low in the 2006 and early 2007, it increased gradually since 2007 following

the liquidity crisis. By the end of the year, the public started to aware that big US banks might write off a

huge amount of losses and a global financial crisis is unfolding.  ̂MG
0;t skyrocketed afterwards, peaking around

the Lehman bankruptcy. After months, with the massive direct capital injection by the US government, the

market calmed down and  ̂MG
0;t gradually recovered to pre-crisis level. Instead of staying low, the several waves

of European Debt Crisis raised  ̂MG
0;t again, although by smaller magnitude.

Figure 2: 251-day rolling  MG
0;t from 03=01=2006 to 31=12=2013. Note: for window [t− 125; t+ 126], we use the middle

date of the window to denote the the mean group estimate  ̂MG
0;t . That’s why the x axis spans from 30=06=2006 to 01=07=2013.
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(a) Consumer (b) Finance

(c) Health (d) Hitech

(e) Manufacturing (f) Other

Figure 3: 251-day rolling  MG
0;g;t from 03=01=2006 to 31=12=2013 for different industry groups.
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To examine the industrial heterogeneity of time variations in the strength of local spillovers, I plot the rolling

mean group estimates of the contemporaneous spatial parameter for different industries in Figure 3. For each

window, the mean group estimate of the contemporaneous spatial parameter for industry g is calculated as

the sample average of individual specific contemporaneous spatial parameter from that industry at t, namely,

 ̂MG
0;g;t = 1

N

P
i2g  ̂0;i;t. The time series pattern of  ̂MG

0;g;t shows a considerable degree of heterogeneity. Table 7

presents the correlation coefficients matrix of  ̂MG
0;t and  ̂MG

0;g;t for g = Consumer, Finance, Health, Manufacturing

and other.  ̂MG
0;consumer;t,  ̂

MG
0;finance;t and  ̂MG

0;manufacturing;t exhibit similar pattern and they all have two obvious

humps around the Great Financial Crisis and European Debt Crisis episodes. While hitech industry also

experienced a rise in local risk spillovers during the Great Financial Crisis, it was not very affected by the

European Debt Crisis. Health care stocks belong to the non-cyclical group and  ̂MG
0;health;t moves in opposite

directions with others.

S&P500 Consumer Finance Health Hitech Manufacturing Other

S&P500 1 0.77 0.79 0.04 0.39 0.65 0.3

Consumer 0.77 1 0.52 -0.18 0.45 0.5 -0.11

Finance 0.79 0.52 1 0.18 0.14 0.25 0.28

Health 0.04 -0.18 0.18 1 -0.16 -0.48 0.21

Hitech 0.39 0.45 0.14 -0.16 1 0.21 -0.46

Manufacturing 0.65 0.5 0.25 -0.48 0.21 1 0.14

Other 0.3 -0.11 0.28 0.21 -0.46 0.14 1

Table 7: Correlation coefficients of  ̂MG
0;t and  ̂MG

0;g;t for g =Consumer, Finance, Health, Manufacturing and

other.

5.2 Time Evolution of Market Factor Strength

While weak CSD intensifies during periods of financial crisis and turmoils, strong CSD, as documented in Baily

et al. (2019[5], 2020[6]), loses its power. According to asset pricing theories like capital asset pricing model

(CAPM), all stocks should load significantly on market factor. In the papers, they propose a estimator of factor

strength based on the number of statistically significant factor loadings, taking account of the multiple testing

problem. For the factor model with ft = (f1t; : : : ; fkt) being the vector of factors.

rit − rft = �i + b0ift + �it for i = 1; : : : ; N (15)

Their proposed an estimator of the factor strength for the jth factor �̂j , which is calculated as

�̂j = 1 +
log(D̂j=N)

log(N)
if D̂j > 0 (16)

where D̂j is the total number of statistically significant loadings of factor j out of N cross-sectional regressions.

The critical value of the test is adjusted for the multiple testing problem.

According to capital asset pricing model (CAPM), the market factor is a strong factor and all stocks load

significantly on market factor as the number of stocks N grows large. This implies the market factor should

have �market = 1. I re-do their exercise and conduct a rolling estimation of �market. Figure 4 plots the rolling
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estimate of the strength of market factor. The time series is more volatile than that in Baily et al. (2020)[6]

since I am using daily 251-day rolling window while they are using monthly 10-year rolling window. As is found

in their work, market factor is pretty strong with its strength being very close to 1 all the time except for a

short period during the financial crisis. This result, together with the time series patterns of the local risk

spillovers show that the strength of strong and weak CSD tend to move in opposite directions. The correlation

coefficient of  ̂MG
0;t and �̂market is −0:6. When market factor loses its importance during the financial crisis,

weak cross-sectional dependence gains its power with the strength of local risk spillovers becoming stronger.

Figure 4: 251-day rolling of �t from 03=01=2006 to 31=12=2013. Note: The factor strength parameter � is calculated as

in Baily et al. (2020).

6 Robustness Check and Placebo Test

6.1 Robustness Check

In this section, I am going to test whether the results are sensitive to the the way we de-factor the panel of

excess returns. As a robustness check, I de-factor by using unobserved factors instead of observed ones. A

hierarchical principal components (PCA) procedure is applied, to remove both principal components at market

level and industry level. Such a hierarchical can be written as:

rit − rft = �i + b0ift + 0ifg;t + �it (17)

where ft is the vector of market factors that affect every stock and fg;t is the vector of industrial factors that

affect every stock in industry g. Applying the information criteria in Bai and Ng (2002)[3], we select the first

5 market principal components and 1 industry principal component. Then I run regression (2) and obtained

the residuals �̂pcait . Estimating the heterogeneous spatial-temporal model (2) using �̂pcait , the results are close to

the one presented in Table 3 and Table 4. The spatial-temporal estimates are slightly smaller, but the main
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conclusions remain valid. The results are given in the Table 14 and Table 15.

6.2 Placebo Test

In this section, I am going to conduct a placebo test by checking whether randomly generated would give

rise to significant local dependencies. Our full sample news-based network has 6742 linked pairs out of

N ∗ (N − 1)=2 = 148785 pairs of firms. So the linking probability is 4:5%. I generate 100 random graphs

using G(N; p) model, which is one version of the Erdős–Rényi (ER) random graph models. In the G(N; p)

model, a graph is constructed by connecting nodes randomly. There are N edges and each edge is included in

the graph with probability p independent from every other edge. To have the same level of sparisty as our full

sample news-based network, I let p = 4:5%.

For each one of the randomly simulated E-R networks, I use it as the adjacency matrix W in equation (2)

and estimate the spatial temporal-model. As expected, none of produce significant spatial parameters. The

placebo test thus confirm that the text analysis approach does help us to identify the links among firms that

are important for the transmissions of local shocks.

7 Conclusion

This paper investigates the local dependencies in idiosyncratic asset returns. Utilizing the novel text-based

linkage data, I am able to construct the channels from which the local shocks transmits. I found that stocks

linked via news paper co-mentioning exhibit excess comovement beyond that is predicted by standard asset

pricing models. Local shocks travel over time and space, and the decay along spatial dimension is slower than

that along time dimension. By analyzing the impulse responses, we are able to identify the major systemic risk

contributors and receivers, which are of the interest to microprudential polices. From a macroprudential per-

spective, by separately addressing both strong and weak cross-sectional dependencies, I found that the strength

of strong and weak CSD tend to move in opposite directions. When equities dis-connect from the market factor

during the period of finanical turmoil, the strength of local risk spillovers becomes stronger.

The findings suggest text-based network as a promising alternative to existing network data. Our empirical

studies show it is competitive in the modelling of local risk spillovers. The author believe that the text-based

dataset can be applied to a wider context. For example, the modelling of the volatility spillovers and the use of

text-based links as prior information in estimating links from large panel, etc.
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Figure 5: A typical business news in the dataset.
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